// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include void SetConfig(paddle::AnalysisConfig *); int main(int argc, char *argv[]) { paddle::AnalysisConfig config; SetConfig(&config); auto predictor = paddle::CreatePaddlePredictor(config); auto input_name = predictor->GetInputNames()[0]; auto input = predictor->GetInputTensor(input_name); std::cout << predictor->GetOutputNames()[0] << std::endl; std::vector shape{1, 3, 300, 300}; input->Reshape(std::move(shape)); std::vector data(1 * 300 * 300 * 3); std::ifstream fin("data/data.txt"); for (int i = 0; i < data.size(); i++) { fin >> data[i]; } input->copy_from_cpu(data.data()); predictor->ZeroCopyRun(); auto output_name = predictor->GetOutputNames()[0]; auto output = predictor->GetOutputTensor(output_name); return 0; } void SetConfig(paddle::AnalysisConfig *config) { config->SetModel("data/model/__model__", "data/model/__params__"); config->SwitchUseFeedFetchOps(false); config->SwitchSpecifyInputNames(true); config->SwitchIrOptim(false); }