/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/inference/inference.h" int main(int argc, char* argv[]) { std::string dirname = "/home/work/liuyiqun/PaddlePaddle/Paddle/paddle/inference/" "recognize_digits_mlp.inference.model"; std::vector feed_var_names = {"x"}; std::vector fetch_var_names = {"fc_2.tmp_2"}; paddle::InferenceEngine* desc = new paddle::InferenceEngine(); desc->LoadInferenceModel(dirname, feed_var_names, fetch_var_names); paddle::framework::LoDTensor input; srand(time(0)); float* input_ptr = input.mutable_data({1, 784}, paddle::platform::CPUPlace()); for (int i = 0; i < 784; ++i) { input_ptr[i] = rand() / (static_cast(RAND_MAX)); } std::vector feeds; feeds.push_back(input); std::vector fetchs; desc->Execute(feeds, fetchs); for (size_t i = 0; i < fetchs.size(); ++i) { auto dims_i = fetchs[i].dims(); std::cout << "dims_i:"; for (int j = 0; j < dims_i.size(); ++j) { std::cout << " " << dims_i[j]; } std::cout << std::endl; std::cout << "result:"; float* output_ptr = fetchs[i].data(); for (int j = 0; j < paddle::framework::product(dims_i); ++j) { std::cout << " " << output_ptr[j]; } std::cout << std::endl; } return 0; }