import unittest import numpy as np from op_test import OpTest class SeqPoolType(OpTest): AVERAGE = 0 SUM = 1 SQRT = 2 MAX = 3 LAST = 4 FIRST = 5 class TestSeqAvgPool(OpTest): def set_data(self): self.op_type = 'sequence_pool' # one level, batch size is 4 x = np.random.uniform(0.1, 1, [11, 23]).astype('float32') lod = [[0, 4, 5, 8, 11]] self.inputs = {'X': (x, lod)} out = np.zeros((4, 23)).astype('float32') self.outputs = {'Out': out} return x, lod, out def compute(self, x, lod, out): self.attrs = {'strategy': SeqPoolType.AVERAGE} for i in range(4): sub_x = x[lod[0][i]:lod[0][i + 1], :] out[i] = sub_x.mean(axis=0) def setUp(self): x, lod, out = self.set_data() self.compute(x, lod, out) def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out") class TestSeqAvgPool2D(TestSeqAvgPool): def set_data(self): self.op_type = 'sequence_pool' # one level, batch size is 4 x = np.random.uniform(0.1, 1, [13, 3, 17]).astype('float32') lod = [[0, 4, 5, 8, 13]] self.inputs = {'X': (x, lod)} out = np.zeros((4, 3, 17)).astype('float32') self.outputs = {'Out': out} return x, lod, out def compute(self, x, lod, out): self.attrs = {'strategy': SeqPoolType.AVERAGE} for i in range(4): sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17)) out[i] = np.reshape(sub_x.mean(axis=0), (3, 17)) class TestSeqSumPool(TestSeqAvgPool): def compute(self, x, lod, out): self.attrs = {'strategy': SeqPoolType.SUM} for i in range(4): sub_x = x[lod[0][i]:lod[0][i + 1], :] out[i] = sub_x.sum(axis=0) class TestSeqSumPool2D(TestSeqAvgPool2D): def compute(self, x, lod, out): self.attrs = {'strategy': SeqPoolType.SUM} for i in range(4): sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17)) out[i] = np.reshape(sub_x.sum(axis=0), (3, 17)) class TestSeqSqrtPool(TestSeqAvgPool): def compute(self, x, lod, out): self.attrs = {'strategy': SeqPoolType.SQRT} for i in range(4): sub_x = x[lod[0][i]:lod[0][i + 1], :] len = lod[0][i + 1] - lod[0][i] out[i] = sub_x.sum(axis=0) / np.sqrt(len) class TestSeqSqrtPool2D(TestSeqAvgPool2D): def compute(self, x, lod, out): self.attrs = {'strategy': SeqPoolType.SQRT} for i in range(4): sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17)) len = lod[0][i + 1] - lod[0][i] out[i] = np.reshape(sub_x.sum(axis=0) / np.sqrt(len), (3, 17)) def test_check_grad(self): self.check_grad(["X"], "Out", max_relative_error=0.06) class TestSeqMaxPool(TestSeqAvgPool): def compute(self, x, lod, out): self.attrs = {'strategy': SeqPoolType.MAX} for i in range(4): sub_x = x[lod[0][i]:lod[0][i + 1], :] out[i] = np.amax(sub_x, axis=0) class TestSeqMaxPool2D(TestSeqAvgPool2D): def compute(self, x, lod, out): self.attrs = {'strategy': SeqPoolType.MAX} for i in range(4): sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17)) out[i] = np.reshape(np.amax(sub_x, axis=0), (3, 17)) def test_check_grad(self): # Remove MaxPool2D from gradient check to confirm the success of CI. return class TestSeqLastPool(TestSeqAvgPool): def compute(self, x, lod, out): self.attrs = {'strategy': SeqPoolType.LAST} for i in range(4): sub_x = x[lod[0][i]:lod[0][i + 1], :] out[i] = sub_x[-1, :] class TestSeqLastPool2D(TestSeqAvgPool2D): def compute(self, x, lod, out): self.attrs = {'strategy': SeqPoolType.LAST} for i in range(4): sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17)) out[i] = np.reshape(sub_x[-1, :], (3, 17)) class TestSeqFirstPool(TestSeqAvgPool): def compute(self, x, lod, out): self.attrs = {'strategy': SeqPoolType.FIRST} for i in range(4): sub_x = x[lod[0][i]:lod[0][i + 1], :] out[i] = sub_x[0, :] class TestSeqFirstPool2D(TestSeqAvgPool2D): def compute(self, x, lod, out): self.attrs = {'strategy': SeqPoolType.FIRST} for i in range(4): sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17)) out[i] = np.reshape(sub_x[0, :], (3, 17)) if __name__ == '__main__': unittest.main()