# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.nn.functional as F import paddle.fluid as fluid import paddle.fluid.dygraph as dg import paddle.fluid.core as core class TestDiagEmbedOp(OpTest): def setUp(self): self.op_type = "diag_embed" self.python_api = F.diag_embed self.init_config() self.outputs = {'Out': self.target} def test_check_output(self): self.check_output(check_eager=True) def init_config(self): self.case = np.random.randn(2, 3).astype('float32') self.inputs = {'Input': self.case} self.attrs = {'offset': 0, 'dim1': -2, 'dim2': -1} self.target = np.stack([np.diag(r, 0) for r in self.inputs['Input']], 0) class TestDiagEmbedOpCase1(TestDiagEmbedOp): def init_config(self): self.case = np.random.randn(2, 3).astype('float32') self.inputs = {'Input': self.case} self.attrs = {'offset': -1, 'dim1': 0, 'dim2': 2} self.target = np.stack([np.diag(r, -1) for r in self.inputs['Input']], 1) class TestDiagEmbedAPICase(unittest.TestCase): def test_case1(self): diag_embed = np.random.randn(2, 3, 4).astype('float32') data1 = fluid.data(name='data1', shape=[2, 3, 4], dtype='float32') out1 = F.diag_embed(data1) out2 = F.diag_embed(data1, offset=1, dim1=-2, dim2=3) place = core.CPUPlace() exe = fluid.Executor(place) results = exe.run(fluid.default_main_program(), feed={"data1": diag_embed}, fetch_list=[out1, out2], return_numpy=True) target1 = np.stack( [np.stack([np.diag(s, 0) for s in r], 0) for r in diag_embed], 0) target2 = np.stack( [np.stack([np.diag(s, 1) for s in r], 0) for r in diag_embed], 0) self.assertTrue(np.allclose(results[0], target1)) self.assertTrue(np.allclose(results[1], target2)) if __name__ == "__main__": unittest.main()