- backward_api : abs_double_grad forward : abs_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x) args : (Tensor x, Tensor grad_x_grad) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : abs_double_grad data_transform: skip_transform : grad_x_grad - backward_api : abs_grad forward : abs (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : abs_grad data_transform: skip_transform : out_grad backward : abs_double_grad - backward_api : acos_grad forward : acos (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : acos_grad inplace : (out_grad -> x_grad) - backward_api : acosh_grad forward : acosh (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : acosh_grad inplace : (out_grad -> x_grad) - backward_api : add_double_grad forward : add_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y) args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta param : [grad_out] kernel : func : add_double_grad optional : grad_x_grad, grad_y_grad backward : add_triple_grad inplace : (grad_x_grad -> grad_out_grad) - backward_api : add_grad forward : add (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : add_grad no_need_buffer : x, y backward : add_double_grad inplace : (out_grad -> x_grad) - backward_api : add_triple_grad forward : add_double_grad (Tensor y, Tensor grad_out, Tensor grad_grad_x, Tensor grad_grad_y, int axis = -1) -> Tensor(grad_grad_out) args : (Tensor grad_grad_x, Tensor grad_grad_y, Tensor grad_grad_out_grad, int axis = -1) output : Tensor(grad_grad_x_grad), Tensor(grad_grad_y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [grad_grad_x, grad_grad_y] kernel : func : add_triple_grad inplace : (grad_grad_out_grad -> grad_grad_x_grad) - backward_api : addmm_grad forward : addmm (Tensor input, Tensor x, Tensor y, float alpha, float beta) -> Tensor(out) args : (Tensor input, Tensor x, Tensor y, Tensor out_grad, float alpha, float beta) output : Tensor(input_grad), Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [input, x, y] kernel : func : addmm_grad - backward_api : affine_grid_grad forward : affine_grid (Tensor input, IntArray outputShape, bool use_cudnn=true, bool align_corners=true) -> Tensor(output) args : (Tensor output_grad, IntArray outputShape, bool use_cudnn=true, bool align_corners=true) output : Tensor(input_grad) infer_meta : func : AffineGridGradInferMeta param : [output_grad, outputShape, align_corners] kernel : func : affine_grid_grad param : [output_grad, outputShape, align_corners] use_gpudnn: use_cudnn - backward_api : amax_grad forward: amax (Tensor x, int64_t[] dims={}, bool keep_dim=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : amax_grad - backward_api : amin_grad forward: amin (Tensor x, int64_t[] dims={}, bool keep_dim=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : amin_grad - backward_api : angle_grad forward : angle (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : angle_grad data_transform: skip_transform : out_grad - backward_api : argsort_grad forward : argsort (Tensor x, int axis, bool descending) -> Tensor(out), Tensor(indices) args : (Tensor indices, Tensor x, Tensor out_grad, int axis, bool descending) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : argsort_grad data_type : out_grad no_need_buffer : x - backward_api : as_complex_grad forward : as_complex (Tensor x) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) invoke : as_real(out_grad) - backward_api : as_real_grad forward : as_real (Tensor x) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) invoke : as_complex(out_grad) - backward_api : asin_grad forward : asin (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : asin_grad inplace : (out_grad -> x_grad) - backward_api : asinh_grad forward : asinh (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : asinh_grad inplace : (out_grad -> x_grad) - backward_api : assign_double_grad forward : assign_grad (Tensor grad_out) -> Tensor(grad_x) args : (Tensor grad_x_grad) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta kernel : func : assign backward: assign_triple_grad inplace : (grad_x_grad -> grad_out_grad) - backward_api : assign_grad forward : assign (Tensor x) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta kernel : func : assign backward: assign_double_grad inplace : (out_grad -> x_grad) - backward_api : assign_out__grad forward : assign_out_ (Tensor x, Tensor output) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta kernel : func : assign inplace : (out_grad -> x_grad) - backward_api : assign_triple_grad forward : assign_double_grad (Tensor grad_out) -> Tensor(grad_x) args : (Tensor grad_x_grad) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta kernel : func : assign inplace : (grad_x_grad -> grad_out_grad) - backward_api : atan_grad forward : atan (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : atan_grad inplace : (out_grad -> x_grad) - backward_api : atanh_grad forward : atanh (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : atanh_grad inplace : (out_grad -> x_grad) - backward_api : batch_norm_double_grad forward : batch_norm_grad (Tensor x, Tensor scale, Tensor bias, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor grad_out, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias) args : (Tensor x, Tensor scale, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor grad_out, Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) output : Tensor(x_grad), Tensor(scale_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, scale, x] kernel : func : batch_norm_grad_grad data_type : x optional : out_mean, out_variance inplace : (grad_out -> grad_out_grad) - backward_api : batch_norm_grad forward : batch_norm (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space) args : (Tensor x, Tensor scale, Tensor bias, Tensor mean_out, Tensor variance_out, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, scale, bias] kernel : func : batch_norm_grad data_type : out_grad optional : mean_out, variance_out, reserve_space backward : batch_norm_double_grad - backward_api : bce_loss_grad forward : bce_loss (Tensor input, Tensor label) -> Tensor(out) args : (Tensor input, Tensor label, Tensor out_grad) output : Tensor(input_grad) infer_meta : func : UnchangedInferMeta param : [input] kernel : func : bce_loss_grad inplace : (out_grad -> input_grad) - backward_api : bicubic_interp_grad forward : bicubic_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output) args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] optional: out_size, size_tensor, scale_tensor kernel : func : bicubic_interp_grad data_type : output_grad - backward_api : bilinear_interp_grad forward : bilinear_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output) args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] optional: out_size, size_tensor, scale_tensor kernel : func : bilinear_interp_grad data_type : output_grad - backward_api : bilinear_tensor_product_grad forward : bilinear_tensor_product (Tensor x, Tensor y, Tensor weight, Tensor bias) -> Tensor(out) args : (Tensor x, Tensor y, Tensor weight, Tensor out_grad) output : Tensor(x_grad), Tensor(y_grad), Tensor(weight_grad), Tensor(bias_grad) infer_meta : func : BilinearTensorProductGradInferMeta kernel : func : bilinear_tensor_product_grad - backward_api : bmm_grad forward : bmm (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : BmmGradInferMeta kernel : func : bmm_grad - backward_api : brelu_grad forward : brelu (Tensor x, float t_min, float t_max) -> Tensor(out) args : (Tensor x, Tensor out_grad, float t_min, float t_max) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : brelu_grad inplace : (out_grad -> x_grad) - backward_api : broadcast_tensors_grad forward : broadcast_tensors (Tensor[] x) -> Tensor[](out) args : (Tensor[] x, Tensor[] out_grad) output : Tensor[](x_grad) infer_meta : func : UnchangedMultiInferMeta param : [x] kernel : func : broadcast_tensors_grad param : [out_grad] no_need_buffer : x - backward_api : cast_grad forward : cast (Tensor x, DataType out_dtype) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : cast_grad data_type : out_grad no_need_buffer : x - backward_api : ceil_grad forward : ceil(Tensor x) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [out_grad] kernel : func : ceil_grad inplace : (out_grad -> x_grad) - backward_api : celu_double_grad forward : celu_grad(Tensor x, Tensor grad_out, float alpha) -> Tensor(grad_x) args : (Tensor x, Tensor grad_out, Tensor grad_x_grad, float alpha) output : Tensor(x_grad), Tensor(grad_out_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, x] kernel : func : celu_double_grad inplace : (grad_x_grad -> grad_out_grad) - backward_api : celu_grad forward : celu(Tensor x, float alpha) -> Tensor(out) args : (Tensor x, Tensor out_grad, float alpha) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : celu_grad backward : celu_double_grad inplace : (out_grad -> x_grad) - backward_api : clip_double_grad forward : clip_grad (Tensor x, Tensor grad_out, Scalar min = 0., Scalar max = 0.) -> Tensor(grad_x) args : (Tensor x, Tensor grad_x_grad, Scalar min = 0., Scalar max = 0.) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : clip_grad - backward_api : clip_grad forward : clip (Tensor x, Scalar min, Scalar max) -> Tensor(out) args : (Tensor x, Tensor out_grad, Scalar min = 0., Scalar max = 0.) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : clip_grad backward : clip_double_grad inplace : (out_grad -> x_grad) - backward_api : complex_grad forward : complex (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : ComplexGradInferMeta kernel : func : complex_grad data_type : x - backward_api : concat_double_grad forward : concat_grad (Tensor[] x, Tensor grad_out, Scalar axis) -> Tensor[](grad_x) args : (Tensor[] grad_x_grad, Scalar axis = 0) output : Tensor(grad_out_grad) infer_meta : func : ConcatInferMeta param : [grad_x_grad, axis] kernel : func : concat - backward_api : concat_grad forward : concat (Tensor[] x, Scalar axis) -> Tensor(out) args : (Tensor[] x, Tensor out_grad, Scalar axis = 0) output : Tensor[](x_grad){x.size()} infer_meta : func : UnchangedMultiInferMeta param : [x] kernel : func : concat_grad no_need_buffer : x backward : concat_double_grad - backward_api : conj_grad forward : conj (Tensor x) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [out_grad] kernel : func : conj - backward_api : conv2d_grad forward : conv2d (Tensor input, Tensor filter, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) -> Tensor(out) args : (Tensor input, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) output : Tensor(input_grad), Tensor(filter_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [input, filter] kernel : func : conv2d_grad use_gpudnn : true backward : conv2d_grad_grad - backward_api : conv2d_grad_grad forward : conv2d_grad (Tensor input, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) -> Tensor(grad_input), Tensor(grad_filter) args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param: [input, filter, grad_out] kernel : func : conv2d_grad_grad use_gpudnn : true optional : grad_input_grad, grad_filter_grad - backward_api : conv2d_transpose_double_grad forward : conv2d_transpose_grad(Tensor x, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_x), Tensor(grad_filter) args : (Tensor x, Tensor filter, Tensor grad_out, Tensor grad_x_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(x_grad), Tensor(filter_grad), Tensor(grad_out_grad) infer_meta : func : Conv2dTransposeDoubleGradInferMeta kernel : func : conv2d_transpose_grad_grad use_gpudnn : true - backward_api : conv2d_transpose_grad forward : conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out) args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(x_grad), Tensor(filter_grad) infer_meta : func : ConvTransposeGradInferMeta kernel : func : conv2d_transpose_grad use_gpudnn : true backward : conv2d_transpose_double_grad - backward_api : conv3d_grad forward : conv3d (Tensor input, Tensor filter, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) -> Tensor(out) args : (Tensor input, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) output : Tensor(input_grad), Tensor(filter_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [input, filter] kernel : func : conv3d_grad use_gpudnn : true backward : conv3d_grad_grad - backward_api : conv3d_grad_grad forward : conv3d_grad (Tensor input, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) -> Tensor(grad_input), Tensor(grad_filter) args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param: [input, filter, grad_out] kernel : func : conv3d_grad_grad use_gpudnn : true optional : grad_input_grad, grad_filter_grad - backward_api : conv3d_transpose_grad forward : conv3d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out) args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(x_grad), Tensor(filter_grad) infer_meta : func : ConvTransposeGradInferMeta kernel : func : conv3d_transpose_grad use_gpudnn : true - backward_api : cos_grad forward : cos (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : cos_grad inplace : (out_grad -> x_grad) - backward_api : cosh_grad forward : cosh (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : cosh_grad inplace : (out_grad -> x_grad) - backward_api : crop_tensor_grad forward : crop_tensor (Tensor x, IntArray shape, IntArray offsets) -> Tensor(out) args : (Tensor x, Tensor out_grad, IntArray offsets) output : Tensor(x_grad) infer_meta : func : CropTensorGradInferMeta kernel : func : crop_tensor_grad data_type : x - backward_api : cross_entropy_with_softmax_grad forward : cross_entropy_with_softmax (Tensor input, Tensor label, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis) -> Tensor(softmax), Tensor(loss) args : (Tensor label, Tensor softmax, Tensor loss_grad, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis) output : Tensor(input_grad) infer_meta : func : CrossEntropyWithSoftmaxGradInferMeta kernel : func : cross_entropy_with_softmax_grad data_type : softmax inplace : (softmax -> input_grad) - backward_api : cumprod_grad forward : cumprod (Tensor x, int dim) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int dim) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : cumprod_grad - backward_api : cumsum_grad forward : cumsum(Tensor x, int axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out) infer_meta : func : UnchangedInferMeta param : [x] args : (Tensor out_grad, int axis, bool flatten, bool exclusive, bool reverse) output : Tensor(x_grad) invoke : cumsum(out_grad, axis, flatten, exclusive, !reverse) - backward_api : deformable_conv_grad forward : deformable_conv(Tensor x, Tensor offset, Tensor filter, Tensor mask, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) -> Tensor(out) args : (Tensor x, Tensor offset, Tensor filter, Tensor mask, Tensor out_grad, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) output : Tensor(x_grad), Tensor(offset_grad), Tensor(filter_grad), Tensor(mask_grad) infer_meta : func : DeformableConvGradInferMeta kernel : func : deformable_conv_grad data_type : x optional : mask - backward_api : depthwise_conv2d_grad forward : depthwise_conv2d (Tensor input, Tensor filter, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search, bool fuse_relu, bool use_gpudnn) -> Tensor(out) args : (Tensor input, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search, bool fuse_relu, bool use_gpudnn) output : Tensor(input_grad), Tensor(filter_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [input, filter] kernel : func : depthwise_conv2d_grad param : [input, filter, out_grad, strides, paddings, paddding_algorithm, groups, dilations, data_format, use_addto, workspace_size_MB, exhaustive_search, fuse_relu] use_gpudnn : use_gpudnn backward : depthwise_conv2d_grad_grad - backward_api : depthwise_conv2d_grad_grad forward : depthwise_conv2d_grad (Tensor input, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search, bool fuse_relu, bool use_gpudnn) -> Tensor(grad_input), Tensor(grad_filter) args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search, bool fuse_relu) output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param: [input, filter, grad_out] kernel : func : depthwise_conv2d_grad_grad optional : grad_input_grad, grad_filter_grad - backward_api : depthwise_conv2d_transpose_grad forward : depthwise_conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out) args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(x_grad), Tensor(filter_grad) infer_meta : func : ConvTransposeGradInferMeta kernel : func : depthwise_conv2d_transpose_grad - backward_api : det_grad forward : det (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : determinant_grad - backward_api : divide_double_grad forward : divide_grad (Tensor x, Tensor y, Tensor out, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y) args : (Tensor y, Tensor out, Tensor grad_x, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1) output : Tensor(y_grad), Tensor(out_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [y, grad_x, grad_x] kernel : func : divide_double_grad data_type : out optional : grad_x_grad, grad_y_grad inplace : (grad_x_grad -> grad_out_grad) - backward_api : divide_grad forward : divide (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : divide_grad backward : divide_double_grad - backward_api : dropout_grad forward : dropout (Tensor x, Tensor seed_tensor, Scalar p, bool is_test, str mode, int seed, bool fix_seed) -> Tensor(out), Tensor(mask) args : (Tensor mask, Tensor out_grad, Scalar p, bool is_test, str mode) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : dropout_grad - backward_api : eig_grad forward : eig (Tensor x) -> Tensor(out_w), Tensor(out_v) args : (Tensor out_w, Tensor out_v, Tensor out_w_grad, Tensor out_v_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_v] kernel : func : eig_grad data_type : out_v data_transform: skip_transform : out_w, out_w_grad - backward_api : eigh_grad forward : eigh (Tensor x, str uplo) -> Tensor(out_w), Tensor(out_v) args : (Tensor out_w, Tensor out_v, Tensor out_w_grad, Tensor out_v_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_v] kernel : func : eigh_grad data_type : out_v data_transform: skip_transform : out_w, out_w_grad - backward_api : eigvalsh_grad forward : eigvalsh (Tensor x, str uplo, bool is_test) -> Tensor(eigenvalues), Tensor(eigenvectors) args : (Tensor eigenvectors, Tensor eigenvalues_grad, str uplo, bool is_test) output : Tensor(x_grad) infer_meta : func : EigvalshGradInferMeta kernel : func : eigvalsh_grad data_type : eigenvectors data_transform : skip_transform : eigenvalues_grad - backward_api : einsum_grad forward : einsum (Tensor[] x, str equation) -> Tensor(out), Tensor[](inner_cache), Tensor[](x_shape) args : (Tensor[] x_shape, Tensor[] inner_cache, Tensor out_grad, str equation) output : Tensor[](x_grad){x.size()} infer_meta : func : UnchangedMultiInferMeta param : [x_shape] kernel : func : einsum_grad - backward_api : elementwise_pow_grad forward : elementwise_pow(Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : elementwise_pow_grad - backward_api : elu_double_grad forward : elu_grad (Tensor x, Tensor out, Tensor grad_out, float alpha)-> Tensor(grad_x) args : (Tensor x, Tensor grad_out, Tensor grad_x_grad, float alpha) output : Tensor(x_grad), Tensor(grad_out_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, x] kernel : func : elu_double_grad inplace : (grad_x_grad -> grad_out_grad) - backward_api : elu_grad forward : elu (Tensor x, float alpha) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, float alpha) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : elu_grad backward : elu_double_grad inplace : (out_grad -> x_grad) - backward_api : embedding_grad forward : embedding (Tensor x, Tensor weight, int64_t padding_idx=-1, bool sparse=false) -> Tensor(out) args : (Tensor x, Tensor weight, Tensor out_grad, int64_t padding_idx=-1, bool sparse=false) output : Tensor(weight_grad) invoke : embedding_grad_impl(x, weight, out_grad, padding_idx, sparse, weight_grad) - backward_api : exp_grad forward : exp (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : exp_grad inplace : (out_grad -> x_grad) - backward_api : expand_as_grad forward : expand_as (Tensor x, Tensor y, int[] target_shape) -> Tensor(out) args : (Tensor x, Tensor out_grad, int[] target_shape) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : expand_as_grad no_need_buffer : x - backward_api : expand_double_grad forward : expand_grad (Tensor x, Tensor grad_out, IntArray shape) -> Tensor(grad_x) args : (Tensor grad_x_grad, IntArray shape) output : Tensor(grad_out_grad) infer_meta : func : ExpandInferMeta kernel : func : expand - backward_api : expand_grad forward : expand (Tensor x, IntArray shape) -> Tensor(out) args : (Tensor x, Tensor out_grad, IntArray shape) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : expand_grad no_need_buffer : x backward : expand_double_grad - backward_api : expm1_grad forward : expm1 (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : expm1_grad inplace : (out_grad -> x_grad) - backward_api : exponential__grad forward : exponential_ (Tensor x, float lambda) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta invoke : zeros_like(out_grad, DataType::UNDEFINED, {}) - backward_api : fill_diagonal_grad forward : fill_diagonal (Tensor x, float value, int offset, bool wrap) -> Tensor(out) args : (Tensor out_grad, float value, int offset, bool wrap) output : Tensor(x_grad) infer_meta : func : FillDiagonalGradInferMeta kernel : func : fill_diagonal_grad - backward_api : fill_diagonal_tensor_grad forward : fill_diagonal_tensor (Tensor x, Tensor y, int64_t offset, int dim1, int dim2) -> Tensor(out) args : (Tensor out_grad, int64_t offset, int dim1, int dim2) output : Tensor(x_grad) infer_meta : func : FillDiagonalTensorGradInferMeta kernel : func : fill_diagonal_tensor_grad inplace : (out_grad -> x_grad) - backward_api : fill_grad forward : fill (Tensor x, Scalar value) -> Tensor(out) args : (Tensor out_grad, Scalar value) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : fill_grad inplace : (out_grad -> x_grad) - backward_api : flatten_grad forward : flatten(Tensor x, int start_axis, int stop_axis) -> Tensor(out), Tensor(xshape) args : (Tensor xshape, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : KernelWithXShapeInferMeta param : [xshape] kernel : func : flatten_grad data_type: out_grad backend: out_grad layout: out_grad inplace : (out_grad -> x_grad) - backward_api : flip_grad forward : flip (Tensor x, int[] axis) -> Tensor(out) args : (Tensor out_grad, int[] axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [out_grad] kernel : func : flip - backward_api : floor_grad forward : floor(Tensor x) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [out_grad] kernel : func : floor_grad inplace : (out_grad -> x_grad) - backward_api : fmax_grad forward : fmax(Tensor x, Tensor y, int axis) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : fmax_grad - backward_api : fmin_grad forward : fmin(Tensor x, Tensor y, int axis) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : fmin_grad - backward_api : frame_grad forward : frame(Tensor x, int frame_length, int hop_length, int axis) -> Tensor(out) args : (Tensor x, Tensor out_grad, int frame_length, int hop_length, int axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : frame_grad - backward_api : frobenius_norm_grad forward : frobenius_norm(Tensor x, int64_t[] axis, bool keep_dim, bool reduce_all) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis, bool keep_dim, bool reduce_all) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : frobenius_norm_grad - backward_api : gather_grad forward : gather(Tensor x, Tensor index, Scalar axis=0) -> Tensor(out) args : (Tensor x, Tensor index, Tensor out_grad, Scalar axis=0, bool overwrite=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : data_type: x func : gather_grad no_need_buffer : x - backward_api : gather_nd_grad forward : gather_nd (Tensor x, Tensor index) -> Tensor(out) args : (Tensor x, Tensor index, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : gather_nd_grad no_need_buffer : x - backward_api : gelu_grad forward : gelu(Tensor x, bool approximate) -> Tensor(out) args : (Tensor x, Tensor out_grad, bool approximate) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : gelu_grad - backward_api : graph_send_recv_grad forward : graph_send_recv (Tensor x, Tensor src_index, Tensor dst_index, str reduce_op = "SUM", IntArray out_size = {0}) -> Tensor(out), Tensor(dst_count) args : (Tensor x, Tensor src_index, Tensor dst_index, Tensor out, Tensor dst_count, Tensor out_grad, str reduce_op = "SUM") output : Tensor(x_grad) infer_meta : func : GeneralUnaryGradInferMeta param : [x] kernel : func : graph_send_recv_grad data_type : out_grad optional: out, dst_count - backward_api : graph_send_ue_recv_grad forward : graph_send_ue_recv (Tensor x, Tensor y, Tensor src_index, Tensor dst_index, str message_op, str reduce_op, IntArray out_size) -> Tensor(out), Tensor(dst_count) args : (Tensor x, Tensor y, Tensor src_index, Tensor dst_index, Tensor out, Tensor dst_count, Tensor out_grad, str message_op, str reduce_op) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : graph_send_ue_recv_grad data_type : out_grad optional: out, dst_count # grid sample - backward_api : grid_sample_grad forward : grid_sample (Tensor x, Tensor grid, str mode, str padding_mode, bool align_corners) -> Tensor(out) args : (Tensor x, Tensor grid, Tensor out_grad, str mode, str padding_mode, bool align_corners) output : Tensor(x_grad), Tensor(grid_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, grid] kernel : func : grid_sample_grad data_type : x - backward_api : group_norm_grad forward : group_norm (Tensor x, Tensor scale, Tensor bias, float epsilon, int groups, str data_layout) -> Tensor(y), Tensor(mean), Tensor(variance) args : (Tensor x, Tensor scale, Tensor bias, Tensor y, Tensor mean, Tensor variance, Tensor y_grad, float epsilon, int groups, str data_layout) output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [y, scale, bias] kernel : func : group_norm_grad data_type : y_grad optional: scale, bias inplace : (y_grad -> x_grad) - backward_api : gumbel_softmax_grad forward : gumbel_softmax (Tensor x, float temperature, bool hard, int axis) -> Tensor(out) args : (Tensor out, Tensor out_grad, int axis) output : Tensor(x_grad) infer_meta : func : GumbelSoftmaxGradInferMeta param : [out, out_grad, axis] kernel : func : gumbel_softmax_grad - backward_api : hard_shrink_grad forward : hard_shrink (Tensor x, float threshold) -> Tensor(out) args : (Tensor x, Tensor out_grad, float threshold) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : hard_shrink_grad inplace : (out_grad -> x_grad) - backward_api : hard_sigmoid_grad forward : hard_sigmoid (Tensor x, float slope, float offset) -> Tensor(out) args : (Tensor out, Tensor out_grad, float slope, float offset) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : hard_sigmoid_grad inplace : (out_grad -> x_grad) - backward_api : hard_swish_grad forward : hard_swish (Tensor x, float threshold = 6.0, float scale = 6.0, float offset = 3.0) -> Tensor(out) args : (Tensor x, Tensor out_grad, float threshold, float scale, float offset) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : hard_swish_grad inplace : (out_grad -> x_grad) - backward_api : hierarchical_sigmoid_grad forward : hierarchical_sigmoid (Tensor x, Tensor w, Tensor label, Tensor path, Tensor code, Tensor bias, int num_classes, bool remote_prefetch, int trainer_id, int64_t[] height_sections, str[] epmap, str[] table_names, bool is_sparse) -> Tensor(out), Tensor(pre_out), Tensor(w_out) args : (Tensor x, Tensor w, Tensor label, Tensor path, Tensor code, Tensor bias, Tensor pre_out, Tensor out_grad, int num_classes, bool remote_prefetch, int trainer_id, int64_t[] height_sections, str[] epmap, str[] table_names, bool is_sparse) output : Tensor(x_grad), Tensor(w_grad), Tensor(bias_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x ,w, bias] optional: path, code, bias kernel : func : hierarchical_sigmoid_grad - backward_api : huber_loss_grad forward : huber_loss (Tensor input, Tensor label, float delta) -> Tensor(out), Tensor(residual) args : (Tensor residual, Tensor out_grad, float delta) output : Tensor(input_grad), Tensor(label_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [residual, residual] kernel : func : huber_loss_grad - backward_api : imag_grad forward : imag (Tensor x) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) invoke : imag_grad_impl(out_grad, x_grad) - backward_api : index_sample_grad forward : index_sample (Tensor x, Tensor index) -> Tensor(out) args : (Tensor x, Tensor index, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : index_sample_grad data_type : out_grad no_need_buffer : x - backward_api : index_select_grad forward : index_select(Tensor x, Tensor index, int dim) -> Tensor(out) args : (Tensor x, Tensor index, Tensor out_grad, int dim) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : index_select_grad data_type : x no_need_buffer : x - backward_api : instance_norm_double_grad forward : instance_norm_grad(Tensor x, Tensor fwd_scale, Tensor saved_mean, Tensor saved_variance, Tensor grad_y, float epsilon) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias) args : (Tensor x, Tensor fwd_scale, Tensor saved_mean, Tensor saved_variance, Tensor grad_y, Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float epsilon) output : Tensor(x_grad), Tensor(fwd_scale_grad), Tensor(grad_y_grad) infer_meta : func : InstanceNormDoubleGradInferMeta kernel : func : instance_norm_double_grad data_type : x optional : fwd_scale, grad_x_grad, grad_scale_grad, grad_bias_grad - backward_api : instance_norm_grad forward : instance_norm(Tensor x, Tensor scale, Tensor bias, float epsilon) -> Tensor(y), Tensor(saved_mean), Tensor(saved_variance) args : (Tensor x, Tensor scale, Tensor saved_mean, Tensor saved_variance, Tensor y_grad, float epsilon) output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad) infer_meta : func : InstanceNormGradInferMeta kernel : func : instance_norm_grad data_type : x optional : scale backward : instance_norm_double_grad - backward_api : inverse_grad forward : inverse(Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta: func : InverseGradInferMeta kernel : func : inverse_grad - backward_api : kldiv_loss_grad forward : kldiv_loss(Tensor x, Tensor label, str reduction) -> Tensor(out) args : (Tensor x, Tensor label, Tensor out_grad, str reduction) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : kldiv_loss_grad no_need_buffer : x - backward_api : kron_grad forward : kron (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : kron_grad data_type : out_grad - backward_api : kthvalue_grad forward : kthvalue(Tensor x, int k, int axis, bool keepdim) -> Tensor(out), Tensor(indices) args : (Tensor x, Tensor indices, Tensor out_grad, int k, int axis, bool keepdim) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : kthvalue_grad - backward_api : label_smooth_grad forward : label_smooth (Tensor label, Tensor prior_dist, float epsilon) -> Tensor(out) args : (Tensor out_grad, float epsilon) output : Tensor(label_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : label_smooth_grad - backward_api : layer_norm_grad forward : layer_norm (Tensor x, Tensor scale, Tensor bias, float epsilon, int begin_norm_axis, bool is_test) -> Tensor(out), Tensor(mean), Tensor(variance) args : (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, Tensor out_grad, float epsilon, int begin_norm_axis, bool is_test) output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad) infer_meta : func : LayerNormGradInferMeta param : [x, scale, bias] kernel : func : layer_norm_grad data_type : out_grad no_need_buffer : bias optional : scale, bias - backward_api : leaky_relu_double_grad forward : leaky_relu_grad (Tensor x, Tensor grad_out, float alpha) -> Tensor(grad_x) args : (Tensor x, Tensor grad_x_grad, float alpha) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta param : [grad_x_grad] kernel : func : leaky_relu_double_grad inplace : (grad_x_grad -> grad_out_grad) - backward_api : leaky_relu_grad forward : leaky_relu (Tensor x, float alpha) -> Tensor(out) args : (Tensor x, Tensor out_grad, float alpha) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : leaky_relu_grad backward : leaky_relu_double_grad inplace : (out_grad -> x_grad) - backward_api : lerp_grad forward : lerp (Tensor x, Tensor y, Tensor weight) -> Tensor(out) args : (Tensor x, Tensor y, Tensor weight, Tensor out, Tensor out_grad) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : lerp_grad - backward_api : linear_interp_grad forward : linear_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output) args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] optional: out_size, size_tensor, scale_tensor kernel : func : linear_interp_grad data_type : output_grad - backward_api : log10_grad forward : log10 (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : log10_grad inplace : (out_grad -> x_grad) - backward_api : log1p_grad forward : log1p (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : log1p_grad inplace : (out_grad -> x_grad) - backward_api : log2_grad forward : log2 (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : log2_grad inplace : (out_grad -> x_grad) - backward_api : log_double_grad forward : log_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x) args : (Tensor x, Tensor grad_out, Tensor grad_x_grad) output : Tensor(x_grad), Tensor(grad_out_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, x] kernel : func : log_double_grad inplace : (grad_x_grad -> grad_out_grad) - backward_api : log_grad forward : log (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : log_grad backward : log_double_grad inplace : (out_grad -> x_grad) - backward_api : log_loss_grad forward : log_loss (Tensor input, Tensor label, float epsilon) -> Tensor(out) args : (Tensor input, Tensor label, Tensor out_grad, float epsilon) output : Tensor(input_grad) infer_meta : func : UnchangedInferMeta param : [input] kernel : func : log_loss_grad - backward_api : log_softmax_grad forward : log_softmax(Tensor x, int axis) -> Tensor(out) args : (Tensor out, Tensor out_grad, int axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [out] kernel : func : log_softmax_grad - backward_api : logcumsumexp_grad forward : logcumsumexp(Tensor x, int axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out) infer_meta : func : UnchangedInferMeta param : [x] args : (Tensor x, Tensor out, Tensor out_grad, int axis, bool flatten, bool exclusive, bool reverse) output : Tensor(x_grad) kernel : func : logcumsumexp_grad - backward_api : logit_grad forward : logit (Tensor x, float eps = 1e-6f) -> Tensor(out) args : (Tensor x, Tensor out_grad, float eps) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : logit_grad - backward_api : logsigmoid_grad forward : logsigmoid (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : logsigmoid_grad inplace : (out_grad -> x_grad) - backward_api : logsumexp_grad forward : logsumexp(Tensor x, int64_t[] axis, bool keepdim, bool reduce_all) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis, bool keepdim, bool reduce_all) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : logsumexp_grad - backward_api : lu_grad forward : lu (Tensor x, bool pivot) -> Tensor(out), Tensor(pivots), Tensor(infos) args : (Tensor x, Tensor out, Tensor pivots, Tensor out_grad, bool pivot) output : Tensor(x_grad) infer_meta : func : LUGradInferMeta kernel : func : lu_grad - backward_api : lu_unpack_grad forward : lu_unpack (Tensor x, Tensor pivots, bool unpack_ludata, bool unpack_pivots) -> Tensor(pmat), Tensor(l), Tensor(u) args : (Tensor x, Tensor pivots, Tensor l, Tensor u, Tensor pmat, Tensor l_grad, Tensor u_grad, bool unpack_ludata, bool unpack_pivots) output : Tensor(x_grad) infer_meta : func : LUUnpackGradInferMeta kernel : func : lu_unpack_grad - backward_api : margin_cross_entropy_grad forward : margin_cross_entropy (Tensor logits, Tensor label, bool return_softmax, int ring_id, int rank, int nranks, float margin1, float margin2, float margin3, float scale) -> Tensor(softmax), Tensor(loss) args : (Tensor logits, Tensor label, Tensor softmax, Tensor loss_grad, bool return_softmax, int ring_id, int rank, int nranks, float margin1, float margin2, float margin3, float scale) output : Tensor(logits_grad) infer_meta : func : MarginCrossEntropyGradInferMeta kernel : func : margin_cross_entropy_grad data_type : softmax inplace : (softmax -> logits_grad) - backward_api : masked_select_grad forward : masked_select (Tensor x, Tensor mask) -> Tensor(out) args : (Tensor x, Tensor mask, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : masked_select_grad data_type : x no_need_buffer : x - backward_api : matmul_double_grad forward : matmul_grad (Tensor x, Tensor y, Tensor grad_out, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y) args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, bool transpose_x=false, bool transpose_y=false) output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, y, grad_out] kernel : func : matmul_double_grad backward : matmul_triple_grad optional : grad_x_grad, grad_y_grad - backward_api : matmul_grad forward : matmul (Tensor x, Tensor y, bool transpose_x=false, bool transpose_y=false) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, bool transpose_x=false, bool transpose_y=false) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : matmul_grad backward : matmul_double_grad - backward_api : matmul_triple_grad forward : matmul_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out) args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, bool transpose_x=false, bool transpose_y=false) output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad) infer_meta : func : GeneralQuinaryGradInferMeta param : [x, y, fwd_grad_out, fwd_grad_grad_x, fwd_grad_grad_y] kernel : func : matmul_triple_grad optional : grad_x_grad, grad_y_grad, grad_grad_out_grad - backward_api : matrix_power_grad forward : matrix_power (Tensor x, int n) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int n) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : matrix_power_grad - backward_api : max_grad forward: max (Tensor x, int64_t[] dims={}, bool keep_dim=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : max_grad - backward_api : max_pool2d_with_index_grad forward : max_pool2d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask) args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) output : Tensor(x_grad) infer_meta : func : MaxPoolWithIndexGradInferMeta kernel : func : max_pool2d_with_index_grad - backward_api : max_pool3d_with_index_grad forward : max_pool3d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask) args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) output : Tensor(x_grad) infer_meta : func : MaxPoolWithIndexGradInferMeta kernel : func : max_pool3d_with_index_grad - backward_api : maximum_grad forward : maximum(Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : maximum_grad - backward_api : maxout_grad forward : maxout(Tensor x, int groups, int axis) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int groups, int axis) output : Tensor(x_grad) infer_meta : func : GeneralUnaryGradInferMeta param: [x] kernel : func : maxout_grad - backward_api : mean_all_grad forward : mean_all(Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : mean_all_grad - backward_api : mean_double_grad forward: mean_grad (Tensor x, Tensor grad_out, int64_t[] dims={}, bool keep_dim=false, bool reduce_all = false) -> Tensor(grad_x) args : (Tensor grad_x_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false) output : Tensor(grad_out_grad) invoke : mean(grad_x_grad, dims, keep_dim) - backward_api : mean_grad forward: mean (Tensor x, int64_t[] dims={}, bool keep_dim=false) -> Tensor(out) args : (Tensor x, Tensor out_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : mean_grad backward : mean_double_grad no_need_buffer : x - backward_api : meshgrid_grad forward : meshgrid (Tensor[] inputs) -> Tensor[](outputs) args : (Tensor[] inputs, Tensor[] outputs_grad) output : Tensor[](inputs_grad){inputs.size()} infer_meta : func : MeshgridGradInferMeta kernel : func : meshgrid_grad - backward_api : min_grad forward: min (Tensor x, int64_t[] dims={}, bool keep_dim=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : min_grad - backward_api : minimum_grad forward : minimum(Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : minimum_grad - backward_api : mish_grad forward : mish (Tensor x, float threshold) -> Tensor(out) args : (Tensor x, Tensor out_grad, float threshold) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : mish_grad inplace : (out_grad -> x_grad) - backward_api : mode_grad forward : mode(Tensor x, int axis, bool keepdim) -> Tensor(out), Tensor(indices) args : (Tensor x, Tensor indices, Tensor out_grad, int axis, bool keepdim) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : mode_grad - backward_api : modulo_grad forward : modulo (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : modulo_grad no_need_buffer : x, y - backward_api : multi_dot_grad forward : multi_dot (Tensor[] x) -> Tensor(out) args : (Tensor[] x, Tensor out_grad) output : Tensor[](x_grad) {x.size()} infer_meta : func : MultiDotGradInferMeta kernel : func : multi_dot_grad - backward_api : multiplex_grad forward : multiplex (Tensor[] ins, Tensor ids) -> Tensor(out) args : (Tensor[] ins, Tensor ids, Tensor out_grad) output : Tensor[](ins_grad){ins.size()} infer_meta : func : MultiplexGradInferMeta param : [ids, out_grad] kernel : func : multiplex_grad param : [ids, out_grad] - backward_api : multiply_double_grad forward : multiply_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y) args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, y, grad_out] kernel : func : multiply_double_grad optional : grad_x_grad, grad_y_grad backward : multiply_triple_grad inplace : (grad_x_grad -> grad_out_grad) - backward_api : multiply_grad forward : multiply (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : multiply_grad backward : multiply_double_grad - backward_api : multiply_triple_grad forward : multiply_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, int aixs = -1) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out) args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad) infer_meta : func : GeneralQuinaryGradInferMeta param : [x, y, fwd_grad_out, x, y] kernel : func : multiply_triple_grad optional : fwd_grad_grad_x, fwd_grad_grad_y, grad_grad_out_grad - backward_api : nearest_interp_grad forward : nearest_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output) args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] optional: out_size, size_tensor, scale_tensor kernel : func : nearest_interp_grad data_type : output_grad - backward_api : nll_loss_grad forward : nll_loss (Tensor input, Tensor label, Tensor weight, int64_t ignore_index, str reduction) -> Tensor(out), Tensor(total_weight) args : (Tensor input, Tensor label, Tensor weight, Tensor total_weight, Tensor out_grad, int64_t ignore_index, str reduction) output : Tensor(input_grad) infer_meta : func : NllLossGradInferMeta kernel : func : nll_loss_grad data_type : input optional : weight - backward_api : norm_grad forward : norm (Tensor x, int axis, float epsilon, bool is_test) -> Tensor(out), Tensor(norm) args : (Tensor x, Tensor norm, Tensor out_grad, int axis, float epsilon, bool is_test) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : norm_grad - backward_api : overlap_add_grad forward : overlap_add(Tensor x, int hop_length, int axis) -> Tensor(out) args : (Tensor x, Tensor out_grad, int hop_length, int axis) output : Tensor(x_grad) infer_meta : func : OverlapAddGradInferMeta kernel : func : overlap_add_grad data_type : x - backward_api : p_norm_grad forward : p_norm(Tensor x, float porder, int axis, float epsilon, bool keepdim, bool asvector=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, float porder, int axis, float epsilon, bool keepdim, bool asvector) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : p_norm_grad - backward_api : pad3d_double_grad forward : pad3d_grad(Tensor x, Tensor grad_out, IntArray paddings, str mode, float pad_value, str data_format) -> Tensor(grad_x) args : (Tensor grad_x_grad, IntArray paddings, str mode, float pad_value, str data_format) output : Tensor(grad_out_grad) infer_meta : func : Pad3dInferMeta kernel : func : pad3d - backward_api : pad3d_grad forward : pad3d(Tensor x, IntArray paddings, str mode, float pad_value, str data_format) -> Tensor(out) args : (Tensor x, Tensor out_grad, IntArray paddings, str mode, float pad_value, str data_format) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : pad3d_grad no_need_buffer : x backward : pad3d_double_grad - backward_api : pad_double_grad forward : pad_grad(Tensor x, Tensor grad_out, int[] paddings, float pad_value) -> Tensor(grad_x) args : (Tensor grad_x_grad, int[] paddings, float pad_value) output : Tensor(grad_out_grad) infer_meta : func : PadInferMeta kernel : func : pad - backward_api : pad_grad forward : pad(Tensor x, int[] paddings, float pad_value) -> Tensor(out) args : (Tensor x, Tensor out_grad, int[] paddings, float pad_value) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : pad_grad param: [out_grad, paddings, pad_value] no_need_buffer : x backward : pad_double_grad - backward_api : pixel_shuffle_grad forward : pixel_shuffle (Tensor x, int upscale_factor, str data_format) -> Tensor(out) args : (Tensor out_grad, int upscale_factor, str data_format) output : Tensor(x_grad) infer_meta : func : PixelShuffleGradInferMeta kernel : func : pixel_shuffle_grad - backward_api : pool2d_double_grad forward : pool2d_grad(Tensor x, Tensor out, Tensor grad_out, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(grad_x) args : (Tensor grad_x_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) output : Tensor(grad_out_grad) infer_meta : func : PoolInferMeta kernel : func : pool2d_double_grad use_gpudnn : true - backward_api : pool2d_grad forward : pool2d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) output : Tensor(x_grad) infer_meta : func : PoolGradInferMeta kernel : func : pool2d_grad use_gpudnn : true backward : pool2d_double_grad - backward_api : pool2d_grad_gpudnn_unused forward : pool2d_gpudnn_unused(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) output : Tensor(x_grad) infer_meta : func : PoolGradInferMeta kernel : func : pool2d_grad use_gpudnn : false - backward_api : pool3d_grad forward : pool3d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) output : Tensor(x_grad) infer_meta : func : PoolGradInferMeta kernel : func : pool3d_grad use_gpudnn : true - backward_api : pow_grad forward : pow(Tensor x, Scalar s) -> Tensor(out) args : (Tensor x, Tensor out_grad, Scalar s=-1) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : pow_grad inplace : (out_grad -> x_grad) - backward_api : prelu_grad forward : prelu(Tensor x, Tensor alpha, str data_format, str mode) -> Tensor(out) args : (Tensor x, Tensor alpha, Tensor out_grad, str data_format, str mode) output : Tensor(x_grad), Tensor(alpha_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, alpha] kernel : func : prelu_grad - backward_api : psroi_pool_grad forward : psroi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale) -> Tensor(out) args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, int output_channels, float spatial_scale) output : Tensor(x_grad) infer_meta : func : GeneralUnaryGradInferMeta param : [x] kernel : func : psroi_pool_grad data_type : x optional : boxes_num # output is optional - backward_api : put_along_axis_grad forward : put_along_axis (Tensor x, Tensor index, Tensor value, int axis, str reduce) -> Tensor(out) args : (Tensor x, Tensor index, Tensor out_grad, int axis, str reduce) output : Tensor(x_grad), Tensor(value_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, index] kernel : func : put_along_axis_grad - backward_api : qr_grad forward : qr (Tensor x, str mode) -> Tensor(q), Tensor(r) args : (Tensor x, Tensor q, Tensor r, Tensor q_grad, Tensor r_grad, str mode) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : qr_grad - backward_api : real_grad forward : real (Tensor x) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) invoke : real_grad_impl(out_grad, x_grad) - backward_api : reciprocal_grad forward : reciprocal (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : reciprocal_grad inplace : (out_grad -> x_grad) - backward_api : reduce_prod_grad forward : reduce_prod (Tensor x, int64_t[] dims, bool keep_dim, bool reduce_all) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims, bool keep_dim, bool reduce_all) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : prod_grad - backward_api : relu6_grad forward : relu6 (Tensor x, float threshold) -> Tensor(out) args : (Tensor out, Tensor out_grad, float threshold) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : relu6_grad inplace : (out_grad -> x_grad) - backward_api : relu_double_grad forward : relu_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x) args : (Tensor out, Tensor grad_x_grad) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : relu_double_grad inplace : (grad_x_grad -> grad_out_grad) - backward_api : relu_grad forward : relu (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : relu_grad backward: relu_double_grad inplace : (out_grad -> x_grad) - backward_api : renorm_grad forward : renorm (Tensor x, float p, int axis, float max_norm) -> Tensor(out) args : (Tensor x, Tensor out_grad, float p, int axis, float max_norm) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : renorm_grad - backward_api : repeat_interleave_grad forward : repeat_interleave(Tensor x, int repeats, int dim) -> Tensor(out) args : (Tensor x, Tensor out_grad, int repeats, int dim) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : repeat_interleave_grad - backward_api : repeat_interleave_with_tensor_index_grad forward : repeat_interleave_with_tensor_index(Tensor x, Tensor repeats, int dim) -> Tensor(out) args : (Tensor x, Tensor repeats, Tensor out_grad, int dim) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : repeat_interleave_with_tensor_index_grad data_type : x - backward_api : reshape_double_grad forward : reshape_grad (Tensor xshape, Tensor grad_out) -> Tensor(grad_x) args : (Tensor grad_out, Tensor grad_x_grad) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta param : [grad_out] kernel : func : reshape_double_grad no_need_buffer : grad_out inplace : (grad_x_grad -> grad_out_grad) - backward_api : reshape_grad forward : reshape (Tensor x, IntArray shape) -> Tensor(out), Tensor(xshape) args : (Tensor xshape, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : KernelWithXShapeInferMeta param : [xshape] kernel : func : reshape_grad param : [out_grad] data_type: out_grad backend: out_grad layout: out_grad backward : reshape_double_grad inplace : (out_grad -> x_grad) - backward_api : reverse_array_grad forward : reverse_array (Tensor[] x, int[] axis) -> Tensor[](out) args : (Tensor[] out_grad, int[] axis) output : Tensor[](x_grad){out_grad.size()} infer_meta : func : ReverseArrayInferMeta kernel : func : reverse - backward_api : reverse_grad forward : reverse (Tensor x, int[] axis) -> Tensor(out) args : (Tensor out_grad, int[] axis) output : Tensor(x_grad) infer_meta : func : ReverseInferMeta invoke : reverse(out_grad, axis) - backward_api : roi_align_grad forward : roi_align (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned) -> Tensor(out) args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : roi_align_grad data_type : boxes no_need_buffer : x optional : boxes_num - backward_api : roi_pool_grad forward : roi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale) -> Tensor(out), Tensor(arg_max) args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor arg_max, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : roi_pool_grad data_type : x optional : boxes_num - backward_api : roll_grad forward : roll(Tensor x, IntArray shifts, int64_t[] axis) -> Tensor(out) args : (Tensor x, Tensor out_grad, IntArray shifts, int64_t[] axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : roll_grad data_type : x no_need_buffer : x - backward_api : round_grad forward : round(Tensor x) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [out_grad] kernel : func : round_grad inplace : (out_grad -> x_grad) - backward_api : rsqrt_double_grad forward : rsqrt_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x) args : (Tensor out, Tensor grad_x, Tensor grad_x_grad) output : Tensor(out_grad), Tensor(grad_out_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [out, out] kernel : func : rsqrt_double_grad inplace : (grad_x_grad -> grad_out_grad) - backward_api : rsqrt_grad forward : rsqrt (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : rsqrt_grad backward : rsqrt_double_grad inplace : (out_grad -> x_grad) - backward_api : scale_double_grad forward : scale_grad (Tensor grad_out, Scalar scale, float bias, bool bias_after_scale) -> Tensor(grad_x) args : (Tensor grad_x_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true) output : Tensor(grad_out_grad) invoke : scale(grad_x_grad, scale, 0.0, bias_after_scale) backward : scale_triple_grad - backward_api : scale_grad forward : scale (Tensor x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(out) args : (Tensor out_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true) output : Tensor(x_grad) invoke : scale(out_grad, scale, 0.0, bias_after_scale) backward : scale_double_grad inplace : (out_grad -> x_grad) - backward_api : scale_triple_grad forward : scale_double_grad (Tensor grad_grad_x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(grad_grad_out) args : (Tensor grad_grad_out_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true) output : Tensor(grad_grad_x_grad) invoke : scale(grad_grad_out_grad, scale, 0.0, bias_after_scale) - backward_api : scatter_grad forward : scatter (Tensor x, Tensor index, Tensor updates, bool overwrite) -> Tensor(out) args : (Tensor index, Tensor updates, Tensor out_grad, bool overwrite) output : Tensor(x_grad), Tensor(updates_grad) infer_meta : func : ScatterGradInferMeta param : [index, updates, out_grad, overwrite] kernel : func : scatter_grad no_need_buffer : updates - backward_api : scatter_nd_add_grad forward : scatter_nd_add (Tensor x, Tensor index, Tensor updates) -> Tensor(out) args : (Tensor index, Tensor updates, Tensor out_grad) output : Tensor(x_grad), Tensor(updates_grad) infer_meta : func : ScatterNdAddGradInferMeta param : [index, updates, out_grad] kernel : func : scatter_nd_add_grad no_need_buffer : updates - backward_api : segment_pool_grad forward : segment_pool (Tensor x, Tensor segment_ids, str pooltype) -> Tensor(out), Tensor(summed_ids) args : (Tensor x, Tensor segment_ids, Tensor out, Tensor summed_ids, Tensor out_grad, str pooltype) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : segment_pool_grad data_type : x optional : summed_ids - backward_api : selu_grad forward : selu (Tensor x, float scale, float alpha) -> Tensor(out) args : (Tensor out, Tensor out_grad, float scale, float alpha) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : selu_grad - backward_api : sigmoid_cross_entropy_with_logits_grad forward : sigmoid_cross_entropy_with_logits (Tensor x, Tensor label, bool normalize, int ignore_index) -> Tensor(out) args : (Tensor x, Tensor label, Tensor out_grad, bool normalize, int ignore_index) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : sigmoid_cross_entropy_with_logits_grad inplace : (out_grad -> x_grad) - backward_api : sigmoid_double_grad forward : sigmoid_grad (Tensor out, Tensor fwd_grad_out) -> Tensor(grad_x) args : (Tensor out, Tensor fwd_grad_out, Tensor grad_x_grad) output : Tensor(out_grad), Tensor(fwd_grad_out_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [out, fwd_grad_out] kernel : func : sigmoid_double_grad backward : sigmoid_triple_grad inplace : (grad_x_grad -> fwd_grad_out_grad) - backward_api : sigmoid_grad forward : sigmoid (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : sigmoid_grad backward : sigmoid_double_grad inplace : (out_grad -> x_grad) - backward_api : sigmoid_triple_grad forward : sigmoid_double_grad (Tensor out, Tensor fwd_grad_out, Tensor grad_grad_x) -> Tensor(grad_out), Tensor(grad_grad_out) args : (Tensor out, Tensor fwd_grad_out, Tensor grad_grad_x, Tensor grad_out_grad, Tensor grad_grad_out_grad) output : Tensor(out_grad), Tensor(fwd_grad_out_grad), Tensor(grad_grad_x_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [out, fwd_grad_out, grad_grad_x] kernel : func : sigmoid_triple_grad optional : grad_grad_out_grad inplace : (grad_grad_x -> fwd_grad_out_grad) - backward_api : silu_grad forward : silu (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : silu_grad inplace : (out_grad -> x_grad) - backward_api : sin_grad forward : sin (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : sin_grad inplace : (out_grad -> x_grad) - backward_api : sinh_grad forward : sinh (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : sinh_grad inplace : (out_grad -> x_grad) - backward_api : slice_double_grad forward : slice_grad (Tensor input, Tensor grad_out, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(grad_input) args : (Tensor grad_input_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta param : [grad_input_grad] kernel : func : slice - backward_api : slice_grad forward : slice (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(out) args : (Tensor input, Tensor out_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) output : Tensor(input_grad) infer_meta : func : UnchangedInferMeta param : [input] kernel : func : slice_grad backward : slice_double_grad no_need_buffer : input - backward_api : slogdet_grad forward : slogdet (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : slogdeterminant_grad - backward_api : soft_shrink_grad forward : soft_shrink (Tensor x, float lambda) -> Tensor(out) args : (Tensor x, Tensor out_grad, float lambda) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : soft_shrink_grad inplace : (out_grad -> x_grad) - backward_api : softmax_grad forward : softmax (Tensor x, int axis) -> Tensor(out) args : (Tensor out, Tensor out_grad, int axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : softmax_grad use_gpudnn : true # softplus - backward_api : softplus_grad forward : softplus (Tensor x, float beta, float threshold) -> Tensor(out) args : (Tensor x, Tensor out_grad, float beta, float threshold) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : softplus_grad inplace : (out_grad -> x_grad) - backward_api : softsign_grad forward : softsign (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : softsign_grad inplace : (out_grad -> x_grad) - backward_api : spectral_norm_grad forward : spectral_norm (Tensor weight, Tensor u, Tensor v, int dim, int power_iters, float eps) -> Tensor(out) args : (Tensor weight, Tensor u, Tensor v, Tensor out_grad, int dim, int power_iters, float eps) output : Tensor(weight_grad) infer_meta : func : SpectralNormGradInferMeta kernel : func : spectral_norm_grad data_type : out_grad - backward_api : split_grad forward : split (Tensor x, IntArray num_or_sections, Scalar axis) -> Tensor[](out) args : (Tensor[] out_grad, Scalar axis = -1) output : Tensor(x_grad) invoke : concat( out_grad, axis) # TODO(zhangyunfei) The config of double grad and triple grad will be supported in the future. - backward_api : sqrt_double_grad forward : sqrt_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x) args : (Tensor out, Tensor grad_x, Tensor grad_x_grad) output : Tensor(out_grad), Tensor(grad_out_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [out, out] kernel : func : sqrt_double_grad inplace : (grad_x_grad -> grad_out_grad) - backward_api : sqrt_grad forward : sqrt (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : sqrt_grad backward : sqrt_double_grad inplace : (out_grad -> x_grad) - backward_api : square_double_grad forward : square_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x) args : (Tensor x, Tensor grad_out, Tensor grad_x_grad) output : Tensor(x_grad), Tensor(grad_out_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, x] kernel : func : square_double_grad inplace : (grad_x_grad -> grad_out_grad) - backward_api : square_grad forward : square (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : square_grad backward : square_double_grad inplace : (out_grad -> x_grad) - backward_api : squared_l2_norm_grad forward : squared_l2_norm(Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : squared_l2_norm_grad - backward_api : squeeze_double_grad forward : squeeze_grad(Tensor xshape, Tensor grad_out, int[] axes) -> Tensor(grad_x) args : (Tensor grad_x_grad, int[] axes) output : Tensor(grad_out_grad) invoke: squeeze(grad_x_grad, axes) - backward_api : squeeze_grad forward : squeeze(Tensor x, int[] axes) -> Tensor(out), Tensor(xshape) args : (Tensor xshape, Tensor out_grad, int[] axes) output : Tensor(x_grad) infer_meta : func : KernelWithXShapeInferMeta param: [xshape] kernel : func : squeeze_grad inplace : (out_grad -> x_grad) backward: squeeze_double_grad - backward_api : stack_grad forward : stack (Tensor[] x, int axis) -> Tensor(out) args : (Tensor[] x, Tensor out_grad, int axis) output : Tensor[](x_grad){x.size()} infer_meta : func : StackGradInferMeta param: [out_grad, axis] kernel : func : stack_grad param : [out_grad, axis] no_need_buffer : x - backward_api : strided_slice_grad forward : strided_slice (Tensor x, int[] axes, IntArray starts, IntArray ends, IntArray strides) -> Tensor(out) args : (Tensor x, Tensor out_grad, int[] axes, IntArray starts, IntArray ends, IntArray strides) output : Tensor(x_grad) infer_meta : func : GeneralUnaryGradInferMeta param : [x] kernel : func : strided_slice_grad no_need_buffer : x - backward_api : subtract_double_grad forward : subtract_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y) args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta param : [grad_out] kernel : func : subtract_double_grad optional : grad_x_grad, grad_y_grad no_need_buffer : y, grad_out inplace : (grad_x_grad -> grad_out_grad) - backward_api : subtract_grad forward : subtract (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : subtract_grad no_need_buffer : x, y backward : subtract_double_grad inplace : (out_grad -> x_grad) - backward_api : sum_double_grad forward : sum_grad (Tensor x, Tensor grad_out, int64_t[] dims, bool keep_dim, bool reduce_all=false) -> Tensor(grad_x) args : (Tensor grad_x_grad, int64_t[] dims={}, bool keep_dim=false) output : Tensor(grad_out_grad) invoke : sum(grad_x_grad, dims, grad_x_grad.dtype(), keep_dim) backward : sum_triple_grad - backward_api : sum_grad forward : sum (Tensor x, int64_t[] dims={}, DataType out_dtype=DataType::UNDEFINED, bool keep_dim=false) -> Tensor(out) args : (Tensor x, Tensor out_grad, int64_t[] dims, bool keep_dim, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : sum_grad no_need_buffer : x backward : sum_double_grad - backward_api : sum_triple_grad forward : sum_double_grad (Tensor grad_grad_x, int64_t[] dims={}, bool keep_dim=false) -> Tensor(grad_grad_out) args : (Tensor grad_grad_x, Tensor grad_grad_out_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false) output : Tensor(grad_grad_x_grad) invoke : sum_grad(grad_grad_x, grad_grad_out_grad, dims, keep_dim, reduce_all, grad_grad_x_grad) - backward_api : svd_grad forward : svd (Tensor x, bool full) -> Tensor(u), Tensor(s), Tensor(vh) args : (Tensor x, Tensor u, Tensor vh, Tensor s, Tensor u_grad, Tensor vh_grad, Tensor s_grad, bool full) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : svd_grad optional: u_grad, vh_grad, s_grad - backward_api : swish_grad forward : swish (Tensor x, float beta=1.0) -> Tensor(out) args : (Tensor x, Tensor out_grad, float bete=1.0) output : Tensor(x_grad) infer_meta : func : GeneralUnaryGradInferMeta param : [x] kernel : func : swish_grad inplace : (out_grad -> x_grad) - backward_api : sync_batch_norm_grad forward : sync_batch_norm_ (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space) args : (Tensor x, Tensor scale, Tensor bias, Tensor mean_out, Tensor variance_out, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, scale, bias] kernel : func : sync_batch_norm_grad data_type : out_grad optional : mean_out, variance_out, reserve_space - backward_api : take_along_axis_grad forward : take_along_axis (Tensor x, Tensor index, int axis) -> Tensor(out) args : (Tensor x, Tensor index, Tensor out_grad, int axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : take_along_axis_grad - backward_api : tan_grad forward : tan (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : tan_grad inplace : (out_grad -> x_grad) - backward_api : tanh_double_grad forward : tanh_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x) args : (Tensor out, Tensor grad_out, Tensor grad_x_grad) output : Tensor(out_grad), Tensor(grad_out_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [out, out] kernel : func : tanh_double_grad backward : tanh_triple_grad inplace : (grad_x_grad -> grad_out_grad) - backward_api : tanh_grad forward : tanh (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : tanh_grad backward : tanh_double_grad inplace : (out_grad -> x_grad) - backward_api : tanh_shrink_grad forward : tanh_shrink (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : tanh_shrink_grad inplace : (out_grad -> x_grad) - backward_api : tanh_triple_grad forward : tanh_double_grad (Tensor out, Tensor grad_out_forward, Tensor grad_x_grad_forward) -> Tensor(grad_out_new), Tensor(grad_out_grad) args : (Tensor out, Tensor grad_out_forward, Tensor grad_x_grad_forward, Tensor grad_out_new_grad, Tensor grad_out_grad_grad) output : Tensor(out_grad), Tensor(grad_out_forward_grad), Tensor(grad_x_grad_forward_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [out, out, grad_x_grad_forward] kernel : func : tanh_triple_grad inplace : (grad_x_grad_forward -> grad_out_forward_grad) - backward_api : temporal_shift_grad forward : temporal_shift(Tensor x, int seg_num, float shift_ratio, str data_format_str) -> Tensor(out) args : (Tensor out_grad, int seg_num, float shift_ratio, str data_format_str) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : temporal_shift_grad - backward_api : thresholded_relu_grad forward : thresholded_relu (Tensor x, float threshold) -> Tensor(out) args : (Tensor x, Tensor out_grad, float threshold) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : thresholded_relu_grad inplace : (out_grad -> x_grad) - backward_api : tile_double_grad forward : tile_grad (Tensor x, Tensor grad_out, IntArray repeat_times) -> Tensor(grad_x) args : (Tensor grad_x_grad, IntArray repeat_times) output : Tensor(grad_out_grad) infer_meta : func : TileInferMeta kernel : func : tile - backward_api : tile_grad forward : tile (Tensor x, IntArray repeat_times) -> Tensor(out) args : (Tensor x, Tensor out_grad, IntArray repeat_times) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : tile_grad no_need_buffer : x backward : tile_double_grad - backward_api : top_k_grad forward : top_k (Tensor x, Scalar k, int axis = -1, bool largest = true, bool sorted = true) -> Tensor(out), Tensor(indices) args : (Tensor x, Tensor indices, Tensor out_grad, Scalar k = -1, int axis = -1, bool largest = true, bool sorted = true) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : top_k_grad - backward_api : transpose_double_grad forward : transpose_grad (Tensor grad_out, int[] axis) -> Tensor(grad_x) args : (Tensor grad_x_grad, int[] axis) output : Tensor(grad_out_grad) invoke : transpose(grad_x_grad, axis) - backward_api : transpose_grad forward : transpose (Tensor x, int[] axis) -> Tensor(out) args : (Tensor out_grad, int[] axis) output : Tensor(x_grad) infer_meta : func : TransposeGradInferMeta param : [out_grad, axis] kernel : func : transpose_grad backward : transpose_double_grad - backward_api : triangular_solve_grad forward : triangular_solve (Tensor x, Tensor y, bool upper, bool tranpose, bool unitriangular) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, bool upper, bool tranpose, bool unitriangular) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : triangular_solve_grad - backward_api : tril_triu_grad forward : tril_triu(Tensor x, int diagonal, bool lower) -> Tensor(out) args : (Tensor out_grad, int diagonal, bool lower) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : tril_triu_grad - backward_api : unbind_grad forward : unbind (Tensor input, int axis) -> Tensor[](out) args : (Tensor[] out_grad, int axis) output : Tensor(input_grad) invoke : stack(out_grad, axis) - backward_api : unfold_grad forward : unfold (Tensor x, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) -> Tensor(out) args : (Tensor x, Tensor out_grad, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : unfold_grad no_need_buffer : x - backward_api : uniform_random_inplace_grad forward : uniform_random_inplace(Tensor x, float min, float max, int seed, int diag_num, int diag_step, float diag_val) -> Tensor(out) args : (Tensor out_grad, float min, float max, int seed, int diag_num, int diag_step, float diag_val) output : Tensor(x_grad) infer_meta : func : UniformRandomInplaceGradInferMeta kernel : func : uniform_random_inplace_grad inplace : (out_grad -> x_grad) - backward_api : unsqueeze_double_grad forward : unsqueeze_grad(Tensor xshape, Tensor grad_out, IntArray axes) -> Tensor(grad_x) args : (Tensor grad_x_grad, IntArray axes) output : Tensor(grad_out_grad) invoke : unsqueeze(grad_x_grad, axes) - backward_api : unsqueeze_grad forward : unsqueeze(Tensor x, IntArray axes) -> Tensor(out), Tensor(xshape) args : (Tensor xshape, Tensor out_grad, IntArray axes) output : Tensor(x_grad) infer_meta : func : KernelWithXShapeInferMeta param: [xshape] kernel : func : unsqueeze_grad param: [xshape, out_grad] inplace : (out_grad -> x_grad) backward : unsqueeze_double_grad - backward_api : unstack_grad forward : unstack (Tensor x, int axis, int num) -> Tensor[](out) args : (Tensor[] out_grad, int axis) output : Tensor(x_grad) infer_meta : func : UnStackGradInferMeta param : [out_grad, axis] kernel : func : unstack_grad - backward_api : warpctc_grad forward : warpctc (Tensor logits, Tensor label, Tensor logits_length, Tensor labels_length, int blank, bool norm_by_times) -> Tensor(loss), Tensor(warpctcgrad) args : (Tensor logits, Tensor logits_length, Tensor warpctcgrad, Tensor loss_grad, int blank, bool norm_by_times) output : Tensor(logits_grad) infer_meta : func : UnchangedInferMeta param : [logits] kernel : func : warpctc_grad optional : logits_length no_need_buffer : logits - backward_api : where_grad forward : where (Tensor condition, Tensor x, Tensor y) -> Tensor(out) args : (Tensor condition, Tensor x, Tensor y, Tensor out_grad) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : where_grad no_need_buffer : x, y - backward_api : yolov3_loss_grad forward : yolov3_loss(Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth=true, float scale_x_y=1.0) -> Tensor(loss), Tensor(objectness_mask), Tensor(gt_match_mask) args : (Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, Tensor objectness_mask, Tensor gt_match_mask, Tensor loss_grad, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth=true, float scale_x_y=1.0) output : Tensor(x_grad), Tensor(gt_box_grad), Tensor(gt_label_grad), Tensor(gt_score_grad) infer_meta : func : Yolov3LossGradInferMeta kernel : func : yolov3_loss_grad optional : gt_score # fold - backward_api: fold_grad forward: fold (Tensor x, int[] output_sizes, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) -> Tensor(out) args: (Tensor x, Tensor out_grad, int[] output_sizes, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) output: Tensor(x_grad) infer_meta: func: UnchangedInferMeta param : [x] kernel: func: fold_grad no_need_buffer : x # unpool3d - backward_api: unpool3d_grad forward: unpool3d (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format) -> Tensor(out) args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format) output: Tensor(x_grad) infer_meta: func: UnchangedInferMeta param : [x] kernel: func: unpool3d_grad data_type: x no_need_buffer : x # unpool - backward_api: unpool_grad forward: unpool (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format) -> Tensor(out) args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, int[] output_size, str data_format) output: Tensor(x_grad) infer_meta: func: UnchangedInferMeta param : [x] kernel: func: unpool_grad data_type: x no_need_buffer : x