# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import time import random import tempfile import shutil from paddle.incubate.hapi.model import Input from paddle.incubate.hapi.vision.models import LeNet from paddle.incubate.hapi.callbacks import config_callbacks class TestCallbacks(unittest.TestCase): def setUp(self): self.save_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.save_dir) def run_callback(self): epochs = 2 steps = 50 freq = 2 eval_steps = 20 lenet = LeNet() inputs = [Input([None, 1, 28, 28], 'float32', name='image')] lenet.prepare(inputs=inputs) cbks = config_callbacks( model=lenet, batch_size=128, epochs=epochs, steps=steps, log_freq=freq, verbose=self.verbose, metrics=['loss', 'acc'], save_dir=self.save_dir) cbks.on_begin('train') logs = {'loss': 50.341673, 'acc': 0.00256} for epoch in range(epochs): cbks.on_epoch_begin(epoch) for step in range(steps): cbks.on_batch_begin('train', step, logs) logs['loss'] -= random.random() * 0.1 logs['acc'] += random.random() * 0.1 time.sleep(0.005) cbks.on_batch_end('train', step, logs) cbks.on_epoch_end(epoch, logs) eval_logs = {'eval_loss': 20.341673, 'eval_acc': 0.256} params = { 'steps': eval_steps, 'metrics': ['eval_loss', 'eval_acc'], } cbks.on_begin('eval', params) for step in range(eval_steps): cbks.on_batch_begin('eval', step, eval_logs) eval_logs['eval_loss'] -= random.random() * 0.1 eval_logs['eval_acc'] += random.random() * 0.1 eval_logs['batch_size'] = 2 time.sleep(0.005) cbks.on_batch_end('eval', step, eval_logs) cbks.on_end('eval', eval_logs) test_logs = {} params = {'steps': eval_steps} cbks.on_begin('test', params) for step in range(eval_steps): cbks.on_batch_begin('test', step, test_logs) test_logs['batch_size'] = 2 time.sleep(0.005) cbks.on_batch_end('test', step, test_logs) cbks.on_end('test', test_logs) cbks.on_end('train') def test_callback_verbose_0(self): self.verbose = 0 self.run_callback() def test_callback_verbose_1(self): self.verbose = 1 self.run_callback() def test_callback_verbose_2(self): self.verbose = 2 self.run_callback() if __name__ == '__main__': unittest.main()