# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fleet Utils.""" """distributed operations""" """basic collective operations in python""" """remote file system""" import os import subprocess from collections import OrderedDict import numpy as np from google.protobuf import text_format import paddle import paddle.framework as framework from paddle.fluid import core, debugger from paddle.fluid.proto import framework_pb2 from paddle.static import Program from ..utils.fs import FS __all__ = [] class UtilFactory: def _create_util(self, context=None): util = UtilBase() if context is not None and "valid_strategy" in context: util._set_strategy(context["valid_strategy"]) if context is not None and "role_maker" in context: util._set_role_maker(context["role_maker"]) return util class UtilBase: def __init__(self): self.role_maker = None self.dist_strategy = None def _set_strategy(self, dist_strategy): self.dist_strategy = dist_strategy def _set_role_maker(self, role_maker): self.role_maker = role_maker def _set_file_system(self, fs_client): assert isinstance( fs_client, FS ), "fs_client must be the instance of paddle.distributed.fleet.utils.FS" self.fs_client = fs_client def all_reduce(self, input, mode="sum", comm_world="worker"): """ All reduce `input` between specified collection. This is a distributed API. Args: input (list|numpy.array): The input variable to do all_reduce between specified collection. mode (str): "sum" or "min" or "max". comm_world (str, optional): Collection used to execute all_reduce operation. Supported collections incude `worker` , `server` and `all` . The default is `worker` . Returns: output(Numpy.array|None): A numpy array with the same shape as the `input` . Examples: .. code-block:: python # Save the following code in `train.py` , and then execute the command `fleetrun --server_num 2 --worker_num 2 train.py` . import paddle.distributed.fleet as fleet from paddle.distributed.fleet import PaddleCloudRoleMaker import sys import numpy as np import os os.environ["PADDLE_WITH_GLOO"] = "2" def train(): role = PaddleCloudRoleMaker( is_collective=False, init_gloo=True, path="./tmp_gloo") fleet.init(role) if fleet.is_server(): input = [1, 2] output = fleet.util.all_reduce(input, "sum", "server") print(output) # [2, 4] elif fleet.is_worker(): input = np.array([3, 4]) output = fleet.util.all_reduce(input, "sum", "worker") print(output) # [6, 8] output = fleet.util.all_reduce(input, "sum", "all") print(output) # [8, 12] if __name__ == "__main__": train() """ return self.role_maker._all_reduce(input, mode, comm_world) def barrier(self, comm_world="worker"): """ Barrier between specified collection. Args: comm_world (str, optional): Collection used to execute barrier operation. Supported collections incude `worker` , `server` and `all` . The default is `worker` . Examples: .. code-block:: python # Save the following code in `train.py` , and then execute the command `fleetrun --server_num 2 --worker_num 2 train.py` . import paddle.distributed.fleet as fleet from paddle.distributed.fleet import PaddleCloudRoleMaker import sys import os os.environ["PADDLE_WITH_GLOO"] = "2" def train(): role = PaddleCloudRoleMaker( is_collective=False, init_gloo=True, path="./tmp_gloo") fleet.init(role) if fleet.is_server(): fleet.util.barrier("server") print("all server arrive here") elif fleet.is_worker(): fleet.util.barrier("worker") print("all server arrive here") fleet.util.barrier("all") print("all servers and workers arrive here") if __name__ == "__main__": train() """ self.role_maker._barrier(comm_world) def all_gather(self, input, comm_world="worker"): """ All gather `input` between specified collection. Args: input (Int|Float): The input variable to do all_gather between specified collection. comm_world (str, optional): Collection used to execute all_reduce operation. Supported collections incude `worker` , `server` and `all` . The default is `worker` . Returns: output (List): A list of gathered values. Examples: .. code-block:: python # Save the following code in `train.py` , and then execute the command `fleetrun --server_num 2 --worker_num 2 train.py` . import paddle.distributed.fleet as fleet from paddle.distributed.fleet import PaddleCloudRoleMaker import sys import os os.environ["PADDLE_WITH_GLOO"] = "2" def train(): role = PaddleCloudRoleMaker( is_collective=False, init_gloo=True, path="./tmp_gloo") fleet.init(role) if fleet.is_server(): input = fleet.server_index() output = fleet.util.all_gather(input, "server") print(output) # output = [0, 1] elif fleet.is_worker(): input = fleet.worker_index() output = fleet.util.all_gather(input, "worker") # output = [0, 1] print(output) output = fleet.util.all_gather(input, "all") print(output) # output = [0, 1, 0, 1] if __name__ == "__main__": train() """ return self.role_maker._all_gather(input, comm_world) def _broadcast(self): pass def _scatter(self): pass def get_heter_file_shard(self, files): if not isinstance(files, list): raise TypeError("files should be a list of file need to be read.") trainers = self.role_maker._worker_num() trainer_id = self.role_maker._worker_index() - trainers remainder = len(files) % trainers blocksize = int(len(files) / trainers) blocks = [blocksize] * trainers for i in range(remainder): blocks[i] += 1 trainer_files = [[]] * trainers begin = 0 for i in range(trainers): trainer_files[i] = files[begin : begin + blocks[i]] begin += blocks[i] return trainer_files[trainer_id] def get_file_shard(self, files): """ Split files before distributed training, and return filelist assigned to the current trainer. .. code-block:: text example 1: files is [a, b, c ,d, e] and trainer_num = 2, then trainer 0 gets [a, b, c] and trainer 1 gets [d, e]. example 2: files is [a, b], and trainer_num = 3, then trainer 0 gets [a], trainer 1 gets [b], trainer 2 gets [] Args: files(list): File list need to be read. Returns: List: Files belong to this worker. Examples: .. code-block:: python import paddle.distributed.fleet as fleet from paddle.distributed.fleet import UserDefinedRoleMaker role = UserDefinedRoleMaker( is_collective=False, init_gloo=False, current_id=0, role=fleet.Role.WORKER, worker_endpoints=["127.0.0.1:6003", "127.0.0.1:6004"], server_endpoints=["127.0.0.1:6001", "127.0.0.1:6002"]) fleet.init(role) files = fleet.util.get_file_shard(["file1", "file2", "file3"]) print(files) # files = ["file1", "file2"] """ if not isinstance(files, list): raise TypeError("files should be a list of file need to be read.") trainer_id = self.role_maker._worker_index() trainers = self.role_maker._worker_num() remainder = len(files) % trainers blocksize = int(len(files) / trainers) blocks = [blocksize] * trainers for i in range(remainder): blocks[i] += 1 trainer_files = [[]] * trainers begin = 0 for i in range(trainers): trainer_files[i] = files[begin : begin + blocks[i]] begin += blocks[i] return trainer_files[trainer_id] def print_on_rank(self, message, rank_id): """ Woker of rank `rank_id` print some message. Args: message(str): Log to be printed. rank_id(int): trainer id. Examples: .. code-block:: python import paddle.distributed.fleet as fleet from paddle.distributed.fleet import UserDefinedRoleMaker role = UserDefinedRoleMaker( is_collective=False, init_gloo=False, current_id=0, role=fleet.Role.WORKER, worker_endpoints=["127.0.0.1:6003", "127.0.0.1:6004"], server_endpoints=["127.0.0.1:6001", "127.0.0.1:6002"]) fleet.init(role) fleet.util.print_on_rank("I'm worker 0", 0) """ if self.role_maker._worker_index() != rank_id: return print(message) def _save_program(self, program, model_filename='__model__', is_text=False): if is_text: with open(model_filename, "w") as f: f.write(str(program)) else: with open(model_filename, "wb") as f: f.write(program.desc.serialize_to_string()) def _load_program(self, path, is_text): def load_program_binary(path): """load program from binary string file""" with open(path, "rb") as f: program_desc_str = f.read() return Program.parse_from_string(program_desc_str) def load_program_text(path): """load program from human-readable text file""" with open(path, "r") as f: program_desc_text = f.read() prog_desc = framework_pb2.ProgramDesc() text_format.Merge(program_desc_text, prog_desc) return Program.parse_from_string(prog_desc.SerializeToString()) if is_text: return load_program_text(path) else: return load_program_binary(path) def _program_type_trans(self, prog_dir, prog_fn, is_text): prog = self._load_program(os.path.join(prog_dir, prog_fn), is_text) prog_out_fn = prog_fn + ".bin" if is_text else prog_fn + ".pbtxt" self._save_program( prog, os.path.join(prog_dir, prog_out_fn), 1 - is_text ) return prog_out_fn def _visualize_graphviz(self, program, output_dir, output_filename): block = program.global_block() dot_path = os.path.join(output_dir, output_filename + '.dot') pdf_path = os.path.join(output_dir, output_filename + '.pdf') debugger.draw_block_graphviz(block, path=dot_path) cmd = ["dot", "-Tpdf", dot_path, "-o", pdf_path] p = subprocess.Popen( cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) p.wait() def _proto_check(self, config): train_prog = self._load_program( config.train_prog_path, config.is_text_train_program ) pruned_prog = self._load_program( config.pruned_prog_path, config.is_text_pruned_program ) is_match = True pruned_vars = [ (v.name, v) for v in pruned_prog.list_vars() if paddle.static.io.is_persistable(v) ] pruned_vars = OrderedDict(pruned_vars) pruned_vars_name = [name for name in pruned_vars] print("persistable vars in pruned program: {}".format(pruned_vars_name)) # feed and fetch op is added in pruned program when pruning, not need to be found in train program feed_fetch_type_list = [ core.VarDesc.VarType.FEED_MINIBATCH, core.VarDesc.VarType.FETCH_LIST, ] for var_name in pruned_vars: var = pruned_vars[var_name] # feed and fetch op is added in pruned program when pruning, not need to be found in train program if var.type in feed_fetch_type_list: break try: train_prog_var = train_prog.global_block().var(var_name) except ValueError as e: print( "Not find variable '%s' in train program. please check pruning." % var_name ) is_match = False continue if ( var.shape != train_prog_var.shape or var.dtype != train_prog_var.dtype ): print( "variable: {} not match. in pruned program shape: {} dtype:{}, in train program shape: {} dtype: {}".format( var_name, var.shape, var.dtype, train_prog_var.shape, train_prog_var.dtype, ) ) is_match = False return is_match def _params_check(self, config): def feed_gen(batch_size, feeded_vars_dims, feeded_vars_filelist): def reader(batch_size, fn, dim): data = [] if isinstance(dim, list) or isinstance(dim, tuple): shape = list(dim) _temp = 1 for x in dim: _temp = _temp * x dim = _temp else: shape = [dim] shape = [batch_size] + shape dim = dim * batch_size for line in open(fn, 'r'): fields = line.strip().split(' ') fields = [float(d) for d in fields] while len(fields) >= dim: tmp = fields[:dim] fields = fields[dim:] data.append(np.array(tmp).reshape(shape)) return data batch_feed = [] for i, fn in enumerate(feeded_vars_filelist): batch_feed.append(reader(batch_size, fn, feeded_vars_dims[i])) return batch_feed prog = self._load_program( os.path.join(config.dump_model_dir, config.dump_program_filename), config.is_text_dump_program, ) if config.is_text_dump_program: model_filename = self._program_type_trans( config.dump_model_dir, config.dump_program_filename, config.is_text_dump_program, ) saved_params = [ v for v in prog.list_vars() if paddle.static.io.is_persistable(v) ] print( "persistable vars in dump program: {}".format( [v.name for v in saved_params] ) ) def check_not_expected_ops(prog, not_expected_op_types): op_types_set = set() for op in prog.global_block().ops: if ( op.type in not_expected_op_types and op.type not in op_types_set ): op_types_set.add(op.type) return op_types_set not_expected_op_types = check_not_expected_ops(prog, ["lookup_table"]) if len(not_expected_op_types) > 0: print( "find op type '{}' in program, please check if your program is pruned correctly !".format( list(not_expected_op_types) ) ) return False place = framework.CPUPlace() exe = paddle.static.Executor(place) scope = paddle.static.Scope() with paddle.static.scope_guard(scope): ( inference_program, feed_target_names, fetch_targets, ) = paddle.distributed.io.load_inference_model_distributed( config.dump_model_dir, exe, model_filename=model_filename, params_filename=config.save_params_filename, ) # check program vars and saved vars shape orig_para_shape = { each_var.name: tuple(each_var.desc.shape()) for each_var in saved_params } for each_var in saved_params: var_temp = paddle.static.global_scope().find_var(each_var.name) assert var_temp is not None, ( "can't not find var: " + each_var.name ) new_shape = (np.array(var_temp.get_tensor())).shape assert each_var.name in orig_para_shape, ( each_var.name + "MUST in var list" ) orig_shape = orig_para_shape.get(each_var.name) if new_shape != orig_shape: raise RuntimeError( "Shape not matching: the Program requires a parameter with a shape of ({}), " "while the loaded parameter (namely [ {} ]) has a shape of ({}).".format( orig_shape, each_var.name, new_shape ) ) # check feed/fetch vars in program and config feed_config = config.feed_config fetch_config = config.fetch_config fetch_targets_names = [v.name for v in fetch_targets] if not feed_target_names: print("warning! no feed targets in program.") if not fetch_targets_names: print("warning! no fetch targets in program.") fetch_list = fetch_targets feed_name_list = feed_target_names if ( feed_config.feeded_vars_names is not None and feed_target_names != feed_config.feeded_vars_names ): print( "warning! feed vars in program and config are diff: feed in program: {}. feed in config {}.".format( feed_target_names, feed_config.feeded_vars_names ) ) feed_name_list = feed_config.feeded_vars_names # remove feed op in inference_program. new feed op will be added in exe.run global_block = inference_program.global_block() need_to_remove_op_index = [] for i, op in enumerate(global_block.ops): op.desc.set_is_target(False) if op.type == "feed": # only remove feed op here need_to_remove_op_index.append(i) for index in need_to_remove_op_index[::-1]: global_block._remove_op(index) if ( fetch_config.fetch_vars_names is not None and fetch_targets_names != fetch_config.fetch_vars_names ): print( "warning! fetch vars in program and config are diff: fetch in program: {}. fetch in config {}.".format( fetch_targets_names, fetch_config.fetch_vars_names ) ) fetch_list = [ inference_program.global_block().var(i) for i in fetch_config.fetch_vars_names ] # remove fetch op in inference_program. new fetch op will be added in exe.run global_block = inference_program.global_block() need_to_remove_op_index = [] for i, op in enumerate(global_block.ops): op.desc.set_is_target(False) if op.type == "fetch": # only remove fetch op here need_to_remove_op_index.append(i) for index in need_to_remove_op_index[::-1]: global_block._remove_op(index) # if fetch_list have lod tensor return_numpy = all([v.lod_level == 0 for v in fetch_list]) # try dump fetch_targets feed_tensors = [] assert ( len(feed_config.feeded_vars_names) == len(feed_config.feeded_vars_dims) == len(feed_config.feeded_vars_types) ) # check program vars and feed tensor shape in config for i in range(len(feed_config.feeded_vars_names)): var = inference_program.global_block().var( feed_config.feeded_vars_names[i] ) if not isinstance( feed_config.feeded_vars_dims[i], (list, tuple) ): tensor_shape = (feed_config.feeded_vars_dims[i],) else: tensor_shape = tuple(feed_config.feeded_vars_dims[i]) feed_config.feeded_vars_dims[i] = tensor_shape var_shape = var.shape[1:] if tensor_shape != var_shape: raise RuntimeError( "feed variable '{}' shape not match. infer program shape: {}. feed tensor shape: {}".format( feed_config.feeded_vars_names[i], var_shape, tensor_shape, ) ) if not feed_config.feeded_vars_filelist: print("generate random feed vars.") for i in range(len(feed_config.feeded_vars_names)): var = inference_program.global_block().var( feed_config.feeded_vars_names[i] ) # create fake feed tensor. if lod_level > 1, should create_lod_tensor() if var.lod_level == 0: feed_tensors.append( np.array( np.random.random( tuple( [config.batch_size] + list(feed_config.feeded_vars_dims[i]) ) ), dtype=feed_config.feeded_vars_types[i], ) ) elif var.lod_level == 1: t = np.array( np.random.random( tuple( [config.batch_size] + list(feed_config.feeded_vars_dims[i]) ) ), dtype=feed_config.feeded_vars_types[i], ) feed_tensors.append( paddle.fluid.create_lod_tensor( t, [[1] * config.batch_size], place ) ) else: raise RuntimeError( "vars with lod_level >= 2 is not supported now in this infer program check tool." ) results = exe.run( inference_program, feed={ name: feed_tensors[i] for i, name in enumerate(feed_name_list) }, fetch_list=fetch_list, return_numpy=return_numpy, ) else: print( "load feed vars from files: {}.".format( feed_config.feeded_vars_filelist ) ) feed_vars = [ inference_program.global_block().var( feed_config.feeded_vars_names[i] ) for i in range(len(feed_config.feeded_vars_names)) ] feeder = paddle.fluid.DataFeeder( feed_list=feed_vars, place=place ) batch_feed = feed_gen( config.batch_size, feed_config.feeded_vars_dims, feed_config.feeded_vars_filelist, ) slots = [batch_feed] results = exe.run( inference_program, feed=feeder.feed(slots), fetch_list=fetch_list, return_numpy=return_numpy, ) for i, v in enumerate(fetch_list): print("fetch_targets name: %s" % v.name) print("fetch_targets: {}".format(results[i])) return results