// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/fluid/memory/buffer.h" #include "paddle/phi/core/device_context.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #if defined(__NVCC__) || defined(__HIPCC__) #include "paddle/phi/kernels/primitive/functor_primitives.h" #ifdef __NVCC__ #include "cub/cub.cuh" #else #include namespace cub = hipcub; #endif #endif namespace phi { namespace funcs { template void SquaredL2Norm(const phi::CPUContext& ctx, const T1* x, T2* y, size_t numel, paddle::memory::Buffer* buffer = nullptr) { if (std::is_same::value) { using EigenT = typename phi::EigenTensor::Type; using ConstEigenT = typename phi::EigenTensor::ConstType; using EigenDim = typename phi::EigenDim<1>::Type; ConstEigenT input(x, EigenDim(numel)); EigenT output(reinterpret_cast(y), EigenDim(1)); output.device(*ctx.eigen_device()) = input.square().sum(); } else { T2 ret = static_cast(0); for (size_t i = 0; i < numel; ++i) { auto tmp = static_cast(x[i]); ret += tmp * tmp; } *y = ret; } } #if defined(__NVCC__) || defined(__HIPCC__) template void SquaredL2Norm(const phi::GPUContext& ctx, const T1* x, T2* y, size_t numel, paddle::memory::Buffer* buffer = nullptr) { if (UNLIKELY(buffer == nullptr)) { paddle::memory::Buffer tmp_buffer(ctx.GetPlace()); return SquaredL2Norm(ctx, x, y, numel, &tmp_buffer); } using FunctorT = phi::kps::SquareFunctor; cub::TransformInputIterator iter(x, FunctorT()); size_t temp_storage_bytes = 0; void* d_temp_storage = nullptr; auto stream = ctx.stream(); #pragma unroll 2 for (size_t i = 0; i < 2; ++i) { if (temp_storage_bytes > 0) { d_temp_storage = buffer->Alloc(temp_storage_bytes); } PADDLE_ENFORCE_GPU_SUCCESS(cub::DeviceReduce::Reduce(d_temp_storage, temp_storage_bytes, iter, y, numel, cub::Sum(), static_cast(0))); } } #endif } // namespace funcs } // namespace phi