/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "SparseRowMatrix.h" #include "CpuSparseMatrix.h" #include #include "paddle/utils/Logging.h" #include "SIMDFunctions.h" #include "paddle/utils/Thread.h" #include "paddle/utils/Util.h" DEFINE_bool(allow_inefficient_sparse_update, false, "Whether to allow inefficient sparse update"); namespace paddle { const unsigned int SparseRowCpuMatrix::kUnusedId_ = -1U; void SparseRowCpuMatrix::init(size_t height, size_t width) { height_ = height; if (!indexDictHandle_) { indexDictHandle_.reset(new IndexDict); indexDictHandle_->globalIndices.assign(height, kUnusedId_); } localIndices_ = &indexDictHandle_->localIndices; globalIndices_ = indexDictHandle_->globalIndices.data(); } void SparseRowCpuMatrix::mul(CpuSparseMatrix* a, CpuMatrix* b, real scaleAB, real scaleT) { CpuMatrix::mul(a, b, this, scaleAB, scaleT); } void SparseRowCpuMatrix::copyFrom(const real* src, size_t size) { LOG(FATAL) << "This should not be called"; } void SparseRowCpuMatrix::zeroMem() { apply([](real* buf, size_t len) { memset(buf, 0, sizeof(real) * len); }); clearRows(); } void SparseRowCpuMatrix::applyL1Decay(real learningRate, real decayRate) { apply([=](real* buf, size_t len) { CpuVector value(0, nullptr); value.subVecFrom(buf, 0, len); value.applyL1(learningRate, decayRate); }); } void SparseRowCpuMatrix::sgdUpdate(BaseMatrix& value, IVector& t0, real learningRate, int currentTime, real decayRate, bool useL1, bool fini) { std::vector& localIndices = indexDictHandle_->localIndices; // t0 and value are vectors CHECK_EQ(t0.getSize(), this->height_); CHECK_EQ(value.width_, this->height_ * this->width_); if (decayRate == 0.0f) { if (fini) { return; } for (size_t i = 0; i < localIndices.size(); ++i) { real* g = getLocalRow(i); real* v = value.rowBuf(localIndices[i]); for (size_t j = 0; j < this->width_; ++j) { v[j] -= learningRate * g[j]; } } return; } // else if (useL1) { // L1 decay if (fini) { for (size_t i = 0; i < this->height_; ++i) { real* v = value.rowBuf(i); int* t = t0.getData() + i; if (t[0] < currentTime) { // W(t0) -> W(t+1) int tDiff = currentTime - t[0]; real delta = tDiff * learningRate * decayRate; simd::decayL1(v, v, delta, this->width_); } } return; } // else for (size_t i = 0; i < localIndices.size(); ++i) { real* g = getLocalRow(i); real* v = value.rowBuf(localIndices[i]); int* t = t0.getData() + localIndices[i]; if (t[0] < currentTime) { // W(t0) -> W(t) int tDiff = currentTime - t[0]; real delta = tDiff * learningRate * decayRate; simd::decayL1(v, v, delta, this->width_); } // W(t) -> W(t+1) for (size_t j = 0; j < this->width_; ++j) { v[j] -= learningRate * g[j]; } simd::decayL1(v, v, learningRate * decayRate, this->width_); // state update to t+1 t[0] = currentTime + 1; } } else { // L2 decay if (fini) { for (size_t i = 0; i < this->height_; ++i) { real* v = value.rowBuf(i); int* t = t0.getData() + i; if (t[0] < currentTime) { // W(t0) -> W(t+1) int tDiff = currentTime - t[0]; real recip = 1.0f / (1.0f + tDiff * learningRate * decayRate); for (size_t j = 0; j < this->width_; ++j) { v[j] *= recip; } } } return; } // else real recipDecay = 1.0f / (1.0f + learningRate * decayRate); for (size_t i = 0; i < localIndices.size(); ++i) { real* g = getLocalRow(i); real* v = value.rowBuf(localIndices[i]); int* t = t0.getData() + localIndices[i]; if (t[0] < currentTime) { // W(t0) -> W(t) int tDiff = currentTime - t[0]; real recip = 1.0f / (1.0f + tDiff * learningRate * decayRate); for (size_t j = 0; j < this->width_; ++j) { v[j] *= recip; } } // W(t) -> W(t+1) for (size_t j = 0; j < this->width_; ++j) { v[j] = recipDecay * (v[j] - learningRate * g[j]); } // state update to t+1 t[0] = currentTime + 1; } } } void SparseRowCpuMatrix::addTo(BaseMatrix& dest, std::vector& ids, size_t tid, size_t numThreads) { CHECK(!dest.useGpu_); CHECK_EQ(dest.height_ * dest.width_, this->height_ * this->width_); std::vector& localIndices = indexDictHandle_->localIndices; for (size_t i = 0; i < localIndices.size(); ++i) { uint32_t id = localIndices[i]; if (id % numThreads == tid) { simd::addTo(dest.rowBuf(id), getLocalRow(i), this->width_); ids.push_back(id); } } } void SparseRowCpuMatrix::addTo(SparseRowCpuMatrix& dest, size_t tid, size_t numThreads) { CHECK(!dest.useGpu_); CHECK_EQ(dest.height_ * dest.width_, this->height_ * this->width_); std::vector& localIndices = indexDictHandle_->localIndices; for (size_t i = 0; i < localIndices.size(); ++i) { uint32_t id = localIndices[i]; if (id % numThreads == tid) { dest.checkIndex(id); simd::addTo(dest.getRow(id), getLocalRow(i), this->width_); } } } void SparseRowCpuMatrix::zeroMemThread(size_t tid, size_t numThreads) { std::vector& localIndices = indexDictHandle_->localIndices; for (size_t i = 0; i < localIndices.size(); ++i) { uint32_t id = localIndices[i]; if (id % numThreads == tid) { memset(this->getLocalRow(i), 0, this->width_ * sizeof(real)); } } } void SparseAutoGrowRowCpuMatrix::mul(CpuSparseMatrix* a, CpuMatrix* b, real scaleAB, real scaleT) { CpuMatrix::mul( a, b, this, scaleAB, scaleT); } void CacheRowCpuMatrix::mul(CpuSparseMatrix* a, CpuMatrix* b, real scaleAB, real scaleT) { CpuMatrix::mul(a, b, this, scaleAB, scaleT); } void SparsePrefetchRowCpuMatrix::addRows(const unsigned int* ids, size_t len) { std::vector& localIndices = indexDictHandle_->localIndices; for (size_t i = 0; i < len; i++) { CHECK_LT(*(ids + i), this->getHeight()) << "id:" << *(ids + i) << "Height:" << this->getHeight() << "sparse id value exceeds the max input dimension, " << "it could be caused invalid input data samples"; } localIndices.insert(localIndices.end(), ids, ids + len); } void SparsePrefetchRowCpuMatrix::addRows(MatrixPtr input) { CpuSparseMatrix* mat = dynamic_cast(input.get()); CHECK(mat) << "only support sparse matrix"; addRows(reinterpret_cast(mat->getCols()), mat->getElementCnt()); } void SparsePrefetchRowCpuMatrix::addRows(IVectorPtr ids) { std::vector& localIndices = indexDictHandle_->localIndices; size_t numSamples = ids->getSize(); int* index = ids->getData(); for (size_t i = 0; i < numSamples; ++i) { if (index[i] == -1) continue; unsigned int id = (unsigned int)index[i]; CHECK_LT(id, this->getHeight()) << "id:" << id << "Height:" << this->getHeight() << "sparse id value exceeds the max input dimension, " << "it could be caused invalid input data samples"; localIndices.push_back(id); } } void SparsePrefetchRowCpuMatrix::setupIndices() { auto& localIndices = indexDictHandle_->localIndices; uniqueIds(localIndices); // for each sparse row for (size_t id = 0; id < localIndices.size(); ++id) { globalIndices_[localIndices[id]] = id; // sparse row -> local id } checkStoreSize(); } void SparseRowCpuMatrix::checkIndices() { std::vector& localIndices = indexDictHandle_->localIndices; for (size_t i = 0; i < localIndices.size(); ++i) { CHECK_EQ(globalIndices_[localIndices[i]], i); } checkStoreSize(); } } // namespace paddle