# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import print_function import unittest import numpy as np import copy from op_test import OpTest def softmax(x): # clip to shiftx, otherwise, when calc loss with # log(exp(shiftx)), may get log(0)=INF shiftx = (x - np.max(x)).clip(-64.) exps = np.exp(shiftx) return exps / np.sum(exps) def iou(box_a, box_b, norm): """Apply intersection-over-union overlap between box_a and box_b """ xmin_a = min(box_a[0], box_a[2]) ymin_a = min(box_a[1], box_a[3]) xmax_a = max(box_a[0], box_a[2]) ymax_a = max(box_a[1], box_a[3]) xmin_b = min(box_b[0], box_b[2]) ymin_b = min(box_b[1], box_b[3]) xmax_b = max(box_b[0], box_b[2]) ymax_b = max(box_b[1], box_b[3]) area_a = (ymax_a - ymin_a + (norm == False)) * (xmax_a - xmin_a + (norm == False)) area_b = (ymax_b - ymin_b + (norm == False)) * (xmax_b - xmin_b + (norm == False)) if area_a <= 0 and area_b <= 0: return 0.0 xa = max(xmin_a, xmin_b) ya = max(ymin_a, ymin_b) xb = min(xmax_a, xmax_b) yb = min(ymax_a, ymax_b) inter_area = max(xb - xa + (norm == False), 0.0) * max(yb - ya + (norm == False), 0.0) iou_ratio = inter_area / (area_a + area_b - inter_area) return iou_ratio def nms(boxes, scores, score_threshold, nms_threshold, top_k=200, normalized=True, eta=1.0): """Apply non-maximum suppression at test time to avoid detecting too many overlapping bounding boxes for a given object. Args: boxes: (tensor) The location preds for the img, Shape: [num_priors,4]. scores: (tensor) The class predscores for the img, Shape:[num_priors]. score_threshold: (float) The confidence thresh for filtering low confidence boxes. nms_threshold: (float) The overlap thresh for suppressing unnecessary boxes. top_k: (int) The maximum number of box preds to consider. eta: (float) The parameter for adaptive NMS. Return: The indices of the kept boxes with respect to num_priors. """ all_scores = copy.deepcopy(scores) all_scores = all_scores.flatten() selected_indices = np.argwhere(all_scores > score_threshold) selected_indices = selected_indices.flatten() all_scores = all_scores[selected_indices] sorted_indices = np.argsort(-all_scores, axis=0, kind='mergesort') sorted_scores = all_scores[sorted_indices] sorted_indices = selected_indices[sorted_indices] if top_k > -1 and top_k < sorted_indices.shape[0]: sorted_indices = sorted_indices[:top_k] sorted_scores = sorted_scores[:top_k] selected_indices = [] adaptive_threshold = nms_threshold for i in range(sorted_scores.shape[0]): idx = sorted_indices[i] keep = True for k in range(len(selected_indices)): if keep: kept_idx = selected_indices[k] overlap = iou(boxes[idx], boxes[kept_idx], normalized) keep = True if overlap <= adaptive_threshold else False else: break if keep: selected_indices.append(idx) if keep and eta < 1 and adaptive_threshold > 0.5: adaptive_threshold *= eta return selected_indices def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold, nms_top_k, keep_top_k, normalized, shared): if shared: class_num = scores.shape[0] priorbox_num = scores.shape[1] else: box_num = scores.shape[0] class_num = scores.shape[1] selected_indices = {} num_det = 0 for c in range(class_num): if c == background: continue if shared: indices = nms(boxes, scores[c], score_threshold, nms_threshold, nms_top_k, normalized) else: indices = nms(boxes[:, c, :], scores[:, c], score_threshold, nms_threshold, nms_top_k, normalized) selected_indices[c] = indices num_det += len(indices) if keep_top_k > -1 and num_det > keep_top_k: score_index = [] for c, indices in selected_indices.items(): for idx in indices: if shared: score_index.append((scores[c][idx], c, idx)) else: score_index.append((scores[idx][c], c, idx)) sorted_score_index = sorted( score_index, key=lambda tup: tup[0], reverse=True) sorted_score_index = sorted_score_index[:keep_top_k] selected_indices = {} for _, c, _ in sorted_score_index: selected_indices[c] = [] for s, c, idx in sorted_score_index: selected_indices[c].append(idx) if not shared: for labels in selected_indices: selected_indices[labels].sort() num_det = keep_top_k return selected_indices, num_det def lod_multiclass_nms(boxes, scores, background, score_threshold, nms_threshold, nms_top_k, keep_top_k, box_lod, normalized): num_class = boxes.shape[1] det_outs = [] lod = [] head = 0 for n in range(len(box_lod[0])): box = boxes[head:head + box_lod[0][n]] score = scores[head:head + box_lod[0][n]] offset = head head = head + box_lod[0][n] nmsed_outs, nmsed_num = multiclass_nms( box, score, background, score_threshold, nms_threshold, nms_top_k, keep_top_k, normalized, shared=False) lod.append(nmsed_num) if nmsed_num == 0: continue tmp_det_out = [] for c, indices in nmsed_outs.items(): for idx in indices: xmin, ymin, xmax, ymax = box[idx, c, :] tmp_det_out.append([ c, score[idx][c], xmin, ymin, xmax, ymax, offset * num_class + idx * num_class + c ]) sorted_det_out = sorted( tmp_det_out, key=lambda tup: tup[0], reverse=False) det_outs.extend(sorted_det_out) return det_outs, lod def batched_multiclass_nms(boxes, scores, background, score_threshold, nms_threshold, nms_top_k, keep_top_k, normalized=True): batch_size = scores.shape[0] num_boxes = scores.shape[2] det_outs = [] index_outs = [] lod = [] for n in range(batch_size): nmsed_outs, nmsed_num = multiclass_nms( boxes[n], scores[n], background, score_threshold, nms_threshold, nms_top_k, keep_top_k, normalized, shared=True) lod.append(nmsed_num) if nmsed_num == 0: continue tmp_det_out = [] for c, indices in nmsed_outs.items(): for idx in indices: xmin, ymin, xmax, ymax = boxes[n][idx][:] tmp_det_out.append([ c, scores[n][c][idx], xmin, ymin, xmax, ymax, idx + n * num_boxes ]) sorted_det_out = sorted( tmp_det_out, key=lambda tup: tup[0], reverse=False) det_outs.extend(sorted_det_out) return det_outs, lod class TestMulticlassNMSOp(OpTest): def set_argument(self): self.score_threshold = 0.01 def setUp(self): self.set_argument() N = 7 M = 1200 C = 21 BOX_SIZE = 4 background = 0 nms_threshold = 0.3 nms_top_k = 400 keep_top_k = 200 score_threshold = self.score_threshold scores = np.random.random((N * M, C)).astype('float32') scores = np.apply_along_axis(softmax, 1, scores) scores = np.reshape(scores, (N, M, C)) scores = np.transpose(scores, (0, 2, 1)) boxes = np.random.random((N, M, BOX_SIZE)).astype('float32') boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5 boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5 det_outs, lod = batched_multiclass_nms(boxes, scores, background, score_threshold, nms_threshold, nms_top_k, keep_top_k) lod = [1] if not det_outs else lod det_outs = [[-1, 0]] if not det_outs else det_outs det_outs = np.array(det_outs) nmsed_outs = det_outs[:, :-1].astype('float32') self.op_type = 'multiclass_nms' self.inputs = {'BBoxes': boxes, 'Scores': scores} self.outputs = {'Out': (nmsed_outs, [lod])} self.attrs = { 'background_label': 0, 'nms_threshold': nms_threshold, 'nms_top_k': nms_top_k, 'keep_top_k': keep_top_k, 'score_threshold': score_threshold, 'nms_eta': 1.0, 'normalized': True, } def test_check_output(self): self.check_output() class TestMulticlassNMSOpNoOutput(TestMulticlassNMSOp): def set_argument(self): # Here set 2.0 to test the case there is no outputs. # In practical use, 0.0 < score_threshold < 1.0 self.score_threshold = 2.0 class TestMulticlassNMSLoDInput(OpTest): def set_argument(self): self.score_threshold = 0.01 def setUp(self): self.set_argument() M = 1200 C = 21 BOX_SIZE = 4 box_lod = [[1200]] background = 0 nms_threshold = 0.3 nms_top_k = 400 keep_top_k = 200 score_threshold = self.score_threshold normalized = False scores = np.random.random((M, C)).astype('float32') scores = np.apply_along_axis(softmax, 1, scores) boxes = np.random.random((M, C, BOX_SIZE)).astype('float32') boxes[:, :, 0] = boxes[:, :, 0] * 10 boxes[:, :, 1] = boxes[:, :, 1] * 10 boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10 boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10 det_outs, lod = lod_multiclass_nms( boxes, scores, background, score_threshold, nms_threshold, nms_top_k, keep_top_k, box_lod, normalized) det_outs = np.array(det_outs).astype('float32') nmsed_outs = det_outs[:, :-1].astype('float32') if len( det_outs) else det_outs self.op_type = 'multiclass_nms' self.inputs = { 'BBoxes': (boxes, box_lod), 'Scores': (scores, box_lod), } self.outputs = {'Out': (nmsed_outs, [lod])} self.attrs = { 'background_label': 0, 'nms_threshold': nms_threshold, 'nms_top_k': nms_top_k, 'keep_top_k': keep_top_k, 'score_threshold': score_threshold, 'nms_eta': 1.0, 'normalized': normalized, } def test_check_output(self): self.check_output() class TestIOU(unittest.TestCase): def test_iou(self): box1 = np.array([4.0, 3.0, 7.0, 5.0]).astype('float32') box2 = np.array([3.0, 4.0, 6.0, 8.0]).astype('float32') expt_output = np.array([2.0 / 16.0]).astype('float32') calc_output = np.array([iou(box1, box2, True)]).astype('float32') self.assertTrue(np.allclose(calc_output, expt_output)) class TestMulticlassNMS2Op(TestMulticlassNMSOp): def setUp(self): self.set_argument() N = 7 M = 1200 C = 21 BOX_SIZE = 4 background = 0 nms_threshold = 0.3 nms_top_k = 400 keep_top_k = 200 score_threshold = self.score_threshold scores = np.random.random((N * M, C)).astype('float32') scores = np.apply_along_axis(softmax, 1, scores) scores = np.reshape(scores, (N, M, C)) scores = np.transpose(scores, (0, 2, 1)) boxes = np.random.random((N, M, BOX_SIZE)).astype('float32') boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5 boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5 det_outs, lod = batched_multiclass_nms(boxes, scores, background, score_threshold, nms_threshold, nms_top_k, keep_top_k) det_outs = np.array(det_outs) nmsed_outs = det_outs[:, :-1].astype('float32') if len( det_outs) else det_outs index_outs = det_outs[:, -1:].astype('int') if len( det_outs) else det_outs self.op_type = 'multiclass_nms2' self.inputs = {'BBoxes': boxes, 'Scores': scores} self.outputs = { 'Out': (nmsed_outs, [lod]), 'Index': (index_outs, [lod]) } self.attrs = { 'background_label': 0, 'nms_threshold': nms_threshold, 'nms_top_k': nms_top_k, 'keep_top_k': keep_top_k, 'score_threshold': score_threshold, 'nms_eta': 1.0, 'normalized': True, } def test_check_output(self): self.check_output() class TestMulticlassNMS2OpNoOutput(TestMulticlassNMS2Op): def set_argument(self): # Here set 2.0 to test the case there is no outputs. # In practical use, 0.0 < score_threshold < 1.0 self.score_threshold = 2.0 class TestMulticlassNMS2LoDInput(TestMulticlassNMSLoDInput): def setUp(self): self.set_argument() M = 1200 C = 21 BOX_SIZE = 4 box_lod = [[1200]] background = 0 nms_threshold = 0.3 nms_top_k = 400 keep_top_k = 200 score_threshold = self.score_threshold normalized = False scores = np.random.random((M, C)).astype('float32') scores = np.apply_along_axis(softmax, 1, scores) boxes = np.random.random((M, C, BOX_SIZE)).astype('float32') boxes[:, :, 0] = boxes[:, :, 0] * 10 boxes[:, :, 1] = boxes[:, :, 1] * 10 boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10 boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10 det_outs, lod = lod_multiclass_nms( boxes, scores, background, score_threshold, nms_threshold, nms_top_k, keep_top_k, box_lod, normalized) det_outs = np.array(det_outs) nmsed_outs = det_outs[:, :-1].astype('float32') if len( det_outs) else det_outs index_outs = det_outs[:, -1:].astype('int') if len( det_outs) else det_outs self.op_type = 'multiclass_nms2' self.inputs = { 'BBoxes': (boxes, box_lod), 'Scores': (scores, box_lod), } self.outputs = { 'Out': (nmsed_outs, [lod]), 'Index': (index_outs, [lod]) } self.attrs = { 'background_label': 0, 'nms_threshold': nms_threshold, 'nms_top_k': nms_top_k, 'keep_top_k': keep_top_k, 'score_threshold': score_threshold, 'nms_eta': 1.0, 'normalized': normalized, } def test_check_output(self): self.check_output() class TestMulticlassNMS2LoDNoOutput(TestMulticlassNMS2LoDInput): def set_argument(self): # Here set 2.0 to test the case there is no outputs. # In practical use, 0.0 < score_threshold < 1.0 self.score_threshold = 2.0 if __name__ == '__main__': unittest.main()