// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "paddle/fluid/operators/distributed/parameter_send.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/selected_rows.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/operators/distributed/distributed.h" #include "paddle/fluid/operators/distributed/rpc_client.h" #include "paddle/fluid/operators/distributed/variable_response.h" #include "paddle/fluid/operators/distributed_ops/send_recv_util.h" namespace paddle { namespace operators { namespace distributed { using LoDTensor = framework::LoDTensor; using LoDTensor = framework::LoDTensor; using SelectedRows = framework::SelectedRows; using DDim = framework::DDim; template void ParameterSend::operator()(const RpcContext &rpc_ctx, const framework::Scope &scope, bool sync) { framework::Scope *local_scope = scope.NewTmpScope(); platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); auto &cpu_ctx = *pool.Get(platform::CPUPlace()); distributed::RPCClient *rpc_client = distributed::RPCClient::GetInstance(0); auto *send_var = scope.FindVar(rpc_ctx.var_name); size_t out_num = rpc_ctx.splited_var_names.size(); if (send_var->IsType()) { if (out_num > 1) { auto &send_tensor = send_var->Get(); auto &send_tensor_dims = send_tensor.dims(); std::vector outs_dims; outs_dims.reserve(out_num); // infer output shape PADDLE_ENFORCE_EQ(rpc_ctx.height_sections.size(), out_num, "tensor split sections size" "should be equal to output size."); for (size_t i = 0; i < out_num; ++i) { auto dim = send_tensor_dims; dim[0] = rpc_ctx.height_sections[i]; outs_dims.push_back(dim); } // create output var in local scope size_t row_offset = 0; for (auto i = 0; i < out_num; ++i) { framework::Tensor *out = local_scope->Var(rpc_ctx.splited_var_names[i]) ->GetMutable(); *out = send_tensor.Slice(row_offset, row_offset + outs_dims[i][0]); row_offset += outs_dims[i][0]; } } } else if (send_var->IsType()) { auto &send_slr = send_var->Get(); auto abs_sections = ToAbsoluteSection(rpc_ctx.height_sections); auto send_rows = send_slr.rows(); std::vector> outs_rows_idx; std::vector> outs_dense_idx; outs_rows_idx.resize(out_num); outs_dense_idx.resize(out_num); auto row_numel = send_slr.value().numel() / send_slr.value().dims()[0]; auto src = send_slr.value().data(); // create output var in local scope std::vector outs; for (auto &name : rpc_ctx.splited_var_names) { auto *out = local_scope->Var(name)->GetMutable(); outs.push_back(out); } // split rows index into output sparse vars for (size_t i = 0; i < send_rows.size(); ++i) { int out_idx = FindOutIdx(send_rows[i], abs_sections); outs_rows_idx[out_idx].push_back(send_rows[i]); outs_dense_idx[out_idx].push_back(i); } auto place = platform::CPUPlace(); for (size_t i = 0; i < outs_rows_idx.size(); ++i) { auto rows_idx = outs_rows_idx[i]; outs[i]->set_height(rpc_ctx.height_sections[i]); auto dims = send_slr.GetCompleteDims(); dims[0] = rows_idx.size(); outs[i]->mutable_value()->mutable_data(dims, send_slr.place()); outs[i]->mutable_rows()->clear(); if (rows_idx.size() > 0) { for (auto idx : rows_idx) { outs[i]->mutable_rows()->push_back(idx - abs_sections[i]); } auto dst = outs[i]->mutable_value()->mutable_data(place); for (size_t j = 0; j < rows_idx.size(); j++) { if (platform::is_cpu_place(place)) { memory::Copy( platform::CPUPlace(), dst + j * row_numel, platform::CPUPlace(), src + outs_dense_idx[i][j] * row_numel, sizeof(T) * row_numel); } else { PADDLE_THROW("do not support GPU now"); /* #ifdef PADDLE_WITH_CUDA auto stream = ctx.cuda_device_context().stream(); memory::Copy(platform::CUDAPlace(), dst + j * row_numel, platform::CUDAPlace(), src + outs_dense_idx[i][j] * row_numel, sizeof(T) * row_numel, stream); #else PADDLE_THROW("Paddle is not compiled with GPU"); #endif */ } } } PADDLE_ENFORCE_EQ(rows_idx.size(), outs[i]->rows().size(), "rows should has the same size with tensor dim 0"); } } else { PADDLE_THROW("unsupported var type to send!"); } std::vector rets; for (size_t i = 0; i < rpc_ctx.splited_var_names.size(); i++) { auto &send_var_name = rpc_ctx.splited_var_names[i]; auto &endpoint = rpc_ctx.epmap[i]; if (NeedSend(*local_scope, send_var_name)) { VLOG(3) << "sending " << send_var_name << " to " << endpoint; rets.push_back(rpc_client->AsyncSendVar(endpoint, cpu_ctx, *local_scope, send_var_name)); } else { VLOG(3) << "don't send non-initialized variable: " << rpc_ctx.splited_var_names[i]; } } // note!! only support sync send now if (true || sync) { for (size_t i = 0; i < rets.size(); i++) { PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient"); } } delete local_scope; } template struct ParameterSend; }; // namespace distributed }; // namespace operators }; // namespace paddle