// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/elementwise_kernel.h" #include "paddle/phi/kernels/xpu/elementwise.h" #include "paddle/phi/backends/xpu/xpu_context.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void FloorDivideRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { using XPUType = typename XPUTypeTrait::Type; auto f = [](xpu::Context* ctx, const XPUType* x, const XPUType* y, XPUType* z, const std::vector& xshape, const std::vector& yshape) { return xpu::broadcast_floordiv(ctx, x, y, z, xshape, yshape); }; XPUElementwise(dev_ctx, x, y, axis, out, f); } template void MaximumRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { using XPUType = typename XPUTypeTrait::Type; auto f = [](xpu::Context* ctx, const XPUType* x, const XPUType* y, XPUType* z, const std::vector& xshape, const std::vector& yshape) { return xpu::broadcast_max(ctx, x, y, z, xshape, yshape); }; XPUElementwise(dev_ctx, x, y, axis, out, f); } template void MinimumRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { using XPUType = typename XPUTypeTrait::Type; auto f = [](xpu::Context* ctx, const XPUType* x, const XPUType* y, XPUType* z, const std::vector& xshape, const std::vector& yshape) { return xpu::broadcast_min(ctx, x, y, z, xshape, yshape); }; XPUElementwise(dev_ctx, x, y, axis, out, f); } template void RemainderRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { using XPUType = typename XPUTypeTrait::Type; auto f = [](xpu::Context* ctx, const XPUType* x, const XPUType* y, XPUType* z, const std::vector& xshape, const std::vector& yshape) { return xpu::broadcast_mod(ctx, x, y, z, xshape, yshape); }; XPUElementwise(dev_ctx, x, y, axis, out, f); } template void ElementwisePowRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { using XPUType = typename XPUTypeTrait::Type; auto f = [](xpu::Context* ctx, const XPUType* x, const XPUType* y, XPUType* z, const std::vector& xshape, const std::vector& yshape) { return xpu::broadcast_pow(ctx, x, y, z, xshape, yshape); }; XPUElementwise(dev_ctx, x, y, axis, out, f); } } // namespace phi PD_REGISTER_KERNEL(floor_divide_raw, XPU, ALL_LAYOUT, phi::FloorDivideRawKernel, float, phi::dtype::float16) {} PD_REGISTER_KERNEL(maximum_raw, XPU, ALL_LAYOUT, phi::MaximumRawKernel, float, phi::dtype::float16) {} PD_REGISTER_KERNEL(minimum_raw, XPU, ALL_LAYOUT, phi::MinimumRawKernel, float, phi::dtype::float16) {} PD_REGISTER_KERNEL(remainder_raw, XPU, ALL_LAYOUT, phi::RemainderRawKernel, float, phi::dtype::float16, int32_t, int64_t) {} PD_REGISTER_KERNEL(elementwise_pow_raw, XPU, ALL_LAYOUT, phi::ElementwisePowRawKernel, float, phi::dtype::float16) {}