// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/truncated_gaussian_random_kernel.h" #include #include #include #include #include #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template struct GPUTruncatedNormal { T mean, std; T a_normal_cdf; T b_normal_cdf; unsigned int seed; T numeric_min; __host__ __device__ GPUTruncatedNormal(T mean, T std, T numeric_min, int seed) : mean(mean), std(std), seed(seed), numeric_min(numeric_min) { a_normal_cdf = (1.0 + erff(-2.0 / sqrtf(2.0))) / 2.0; b_normal_cdf = (1.0 + erff(2.0 / sqrtf(2.0))) / 2.0; } __host__ __device__ T operator()(const unsigned int n) const { thrust::minstd_rand rng; rng.seed(seed); thrust::uniform_real_distribution dist(numeric_min, 1); rng.discard(n); T value = dist(rng); auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value; return std::sqrt(2.0) * erfinvf(2 * p - 1) * std + mean; } }; template struct TruncatedNormalOffset { T mean, std; T a_normal_cdf; T b_normal_cdf; unsigned int seed; T numeric_min; int offset_; __host__ __device__ TruncatedNormalOffset(T mean, T std, T numeric_min, int seed, int offset) : mean(mean), std(std), seed(seed), numeric_min(numeric_min), offset_(offset) { a_normal_cdf = (1.0 + erff(-2.0 / sqrtf(2.0))) / 2.0; b_normal_cdf = (1.0 + erff(2.0 / sqrtf(2.0))) / 2.0; } __host__ __device__ T operator()(const unsigned int n) const { thrust::minstd_rand rng; rng.seed(seed); thrust::uniform_real_distribution dist(numeric_min, 1); rng.discard(n + offset_); T value = dist(rng); auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value; return std::sqrt(2.0) * erfinvf(2 * p - 1) * std + mean; } }; template void TruncatedGaussianRandomKernel(const Context& dev_ctx, const std::vector& shape, float mean, float std, int seed, DataType dtype, DenseTensor* out) { T* data = dev_ctx.template Alloc(out); thrust::counting_iterator index_sequence_begin(0); int64_t size = out->numel(); auto gen_cuda = dev_ctx.GetGenerator(); if (seed == 0) { // use global Generator seed auto seed_offset = gen_cuda->IncrementOffset(1); uint64_t seed = seed_offset.first; uint64_t offset = seed_offset.second; thrust::transform( index_sequence_begin, index_sequence_begin + size, thrust::device_ptr(data), TruncatedNormalOffset( mean, std, std::numeric_limits::min(), seed, size * offset)); } else { // use OP seed thrust::transform( index_sequence_begin, index_sequence_begin + size, thrust::device_ptr(data), GPUTruncatedNormal(mean, std, std::numeric_limits::min(), seed)); } } } // namespace phi PD_REGISTER_KERNEL(truncated_gaussian_random, GPU, ALL_LAYOUT, phi::TruncatedGaussianRandomKernel, float) {}