# copyright (c) 2020 paddlepaddle authors. all rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import unittest import os import numpy as np import shutil import tempfile from paddle import fluid from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear from paddle.fluid.dygraph.container import Sequential from paddle.fluid.dygraph.base import to_variable from paddle.incubate.hapi.model import Model, Input, set_device from paddle.incubate.hapi.loss import CrossEntropy from paddle.incubate.hapi.metrics import Accuracy from paddle.incubate.hapi.datasets import MNIST from paddle.incubate.hapi.vision.models import LeNet from paddle.incubate.hapi.distributed import DistributedBatchSampler, prepare_distributed_context class LeNetDygraph(fluid.dygraph.Layer): def __init__(self, num_classes=10, classifier_activation='softmax'): super(LeNetDygraph, self).__init__() self.num_classes = num_classes self.features = Sequential( Conv2D( 1, 6, 3, stride=1, padding=1), Pool2D(2, 'max', 2), Conv2D( 6, 16, 5, stride=1, padding=0), Pool2D(2, 'max', 2)) if num_classes > 0: self.fc = Sequential( Linear(400, 120), Linear(120, 84), Linear( 84, 10, act=classifier_activation)) def forward(self, inputs): x = self.features(inputs) if self.num_classes > 0: x = fluid.layers.flatten(x, 1) x = self.fc(x) return x class MnistDataset(MNIST): def __init__(self, mode, return_label=True, sample_num=None): super(MnistDataset, self).__init__(mode=mode) self.return_label = return_label if sample_num: self.images = self.images[:sample_num] self.labels = self.labels[:sample_num] def __getitem__(self, idx): img, label = self.images[idx], self.labels[idx] img = np.reshape(img, [1, 28, 28]) if self.return_label: return img, np.array(self.labels[idx]).astype('int64') return img, def __len__(self): return len(self.images) def compute_acc(pred, label): pred = np.argmax(pred, -1) label = np.array(label) correct = pred[:, np.newaxis] == label return np.sum(correct) / correct.shape[0] def dynamic_train(model, dataloader): optim = fluid.optimizer.Adam( learning_rate=0.001, parameter_list=model.parameters()) model.train() for inputs, labels in dataloader: outputs = model(inputs) loss = fluid.layers.cross_entropy(outputs, labels) avg_loss = fluid.layers.reduce_sum(loss) avg_loss.backward() optim.minimize(avg_loss) model.clear_gradients() def dynamic_evaluate(model, dataloader): with fluid.dygraph.no_grad(): model.eval() cnt = 0 for inputs, labels in dataloader: outputs = model(inputs) cnt += (np.argmax(outputs.numpy(), -1)[:, np.newaxis] == labels.numpy()).astype('int').sum() return cnt / len(dataloader.dataset) @unittest.skipIf(not fluid.is_compiled_with_cuda(), 'CPU testing is not supported') class TestModel(unittest.TestCase): @classmethod def setUpClass(cls): if not fluid.is_compiled_with_cuda(): self.skipTest('module not tested when ONLY_CPU compling') cls.device = set_device('gpu') fluid.enable_dygraph(cls.device) sp_num = 1280 cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num) cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num) cls.test_dataset = MnistDataset( mode='test', return_label=False, sample_num=sp_num) cls.train_loader = fluid.io.DataLoader( cls.train_dataset, places=cls.device, batch_size=64) cls.val_loader = fluid.io.DataLoader( cls.val_dataset, places=cls.device, batch_size=64) cls.test_loader = fluid.io.DataLoader( cls.test_dataset, places=cls.device, batch_size=64) seed = 333 fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed dy_lenet = LeNetDygraph() cls.init_param = dy_lenet.state_dict() dynamic_train(dy_lenet, cls.train_loader) cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader) cls.inputs = [Input([-1, 1, 28, 28], 'float32', name='image')] cls.labels = [Input([None, 1], 'int64', name='label')] cls.save_dir = tempfile.mkdtemp() cls.weight_path = os.path.join(cls.save_dir, 'lenet') fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path) fluid.disable_dygraph() @classmethod def tearDownClass(cls): shutil.rmtree(cls.save_dir) def test_fit_dygraph(self): self.fit(True) def test_fit_static(self): self.fit(False) def test_evaluate_dygraph(self): self.evaluate(True) def test_evaluate_static(self): self.evaluate(False) def test_predict_dygraph(self): self.predict(True) def test_predict_static(self): self.predict(False) def test_prepare_context(self): prepare_distributed_context() def fit(self, dynamic): fluid.enable_dygraph(self.device) if dynamic else None seed = 333 fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed model = LeNet() optim_new = fluid.optimizer.Adam( learning_rate=0.001, parameter_list=model.parameters()) model.prepare( optim_new, loss_function=CrossEntropy(average=False), metrics=Accuracy(), inputs=self.inputs, labels=self.labels) model.fit(self.train_dataset, batch_size=64, shuffle=False) result = model.evaluate(self.val_dataset, batch_size=64) np.testing.assert_allclose(result['acc'], self.acc1) train_sampler = DistributedBatchSampler( self.train_dataset, batch_size=64, shuffle=False) val_sampler = DistributedBatchSampler( self.val_dataset, batch_size=64, shuffle=False) train_loader = fluid.io.DataLoader( self.train_dataset, batch_sampler=train_sampler, places=self.device, return_list=True) val_loader = fluid.io.DataLoader( self.val_dataset, batch_sampler=val_sampler, places=self.device, return_list=True) model.fit(train_loader, val_loader) fluid.disable_dygraph() if dynamic else None def evaluate(self, dynamic): fluid.enable_dygraph(self.device) if dynamic else None model = LeNet() model.prepare( metrics=Accuracy(), inputs=self.inputs, labels=self.labels) model.load(self.weight_path) result = model.evaluate(self.val_dataset, batch_size=64) np.testing.assert_allclose(result['acc'], self.acc1) sampler = DistributedBatchSampler( self.val_dataset, batch_size=64, shuffle=False) val_loader = fluid.io.DataLoader( self.val_dataset, batch_sampler=sampler, places=self.device, return_list=True) model.evaluate(val_loader) fluid.disable_dygraph() if dynamic else None def predict(self, dynamic): fluid.enable_dygraph(self.device) if dynamic else None model = LeNet() model.prepare(inputs=self.inputs) model.load(self.weight_path) output = model.predict( self.test_dataset, batch_size=64, stack_outputs=True) np.testing.assert_equal(output[0].shape[0], len(self.test_dataset)) acc = compute_acc(output[0], self.val_dataset.labels) np.testing.assert_allclose(acc, self.acc1) sampler = DistributedBatchSampler( self.test_dataset, batch_size=64, shuffle=False) test_loader = fluid.io.DataLoader( self.test_dataset, batch_sampler=sampler, places=self.device, return_list=True) model.evaluate(test_loader) fluid.disable_dygraph() if dynamic else None class MyModel(Model): def __init__(self): super(MyModel, self).__init__() self._fc = Linear(20, 10, act='softmax') def forward(self, x): y = self._fc(x) return y class TestModelFunction(unittest.TestCase): def set_seed(self, seed=1024): fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed def test_train_batch(self, dynamic=True): dim = 20 data = np.random.random(size=(4, dim)).astype(np.float32) label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64) def get_expect(): fluid.enable_dygraph(fluid.CPUPlace()) self.set_seed() m = MyModel() optim = fluid.optimizer.SGD(learning_rate=0.001, parameter_list=m.parameters()) m.train() output = m(to_variable(data)) l = to_variable(label) loss = fluid.layers.cross_entropy(output, l) avg_loss = fluid.layers.reduce_sum(loss) avg_loss.backward() optim.minimize(avg_loss) m.clear_gradients() fluid.disable_dygraph() return avg_loss.numpy() ref = get_expect() for dynamic in [True, False]: device = set_device('cpu') fluid.enable_dygraph(device) if dynamic else None self.set_seed() model = MyModel() optim2 = fluid.optimizer.SGD(learning_rate=0.001, parameter_list=model.parameters()) inputs = [Input([None, dim], 'float32', name='x')] labels = [Input([None, 1], 'int64', name='label')] model.prepare( optim2, loss_function=CrossEntropy(average=False), inputs=inputs, labels=labels, device=device) loss, = model.train_batch([data], [label]) np.testing.assert_allclose(loss.flatten(), ref.flatten()) fluid.disable_dygraph() if dynamic else None def test_test_batch(self, dynamic=True): dim = 20 data = np.random.random(size=(4, dim)).astype(np.float32) def get_expect(): fluid.enable_dygraph(fluid.CPUPlace()) self.set_seed() m = MyModel() m.eval() output = m(to_variable(data)) fluid.disable_dygraph() return output.numpy() ref = get_expect() for dynamic in [True, False]: device = set_device('cpu') fluid.enable_dygraph(device) if dynamic else None self.set_seed() model = MyModel() inputs = [Input([None, dim], 'float32', name='x')] model.prepare(inputs=inputs, device=device) out, = model.test_batch([data]) np.testing.assert_allclose(out, ref) fluid.disable_dygraph() if dynamic else None def test_save_load(self): path = tempfile.mkdtemp() for dynamic in [True, False]: device = set_device('cpu') fluid.enable_dygraph(device) if dynamic else None model = MyModel() inputs = [Input([None, 20], 'float32', name='x')] labels = [Input([None, 1], 'int64', name='label')] optim = fluid.optimizer.SGD(learning_rate=0.001, parameter_list=model.parameters()) model.prepare( inputs=inputs, optimizer=optim, loss_function=CrossEntropy(average=False), labels=labels) model.save(path + '/test') model.load(path + '/test') shutil.rmtree(path) fluid.disable_dygraph() if dynamic else None def test_dynamic_save_static_load(self): path = tempfile.mkdtemp() # for dynamic in [True, False]: device = set_device('cpu') fluid.enable_dygraph(device) #if dynamic else None model = MyModel() inputs = [Input([None, 20], 'float32', name='x')] labels = [Input([None, 1], 'int64', name='label')] optim = fluid.optimizer.SGD(learning_rate=0.001, parameter_list=model.parameters()) model.prepare( inputs=inputs, optimizer=optim, loss_function=CrossEntropy(average=False), labels=labels) model.save(path + '/test') fluid.disable_dygraph() model = MyModel() inputs = [Input([None, 20], 'float32', name='x')] labels = [Input([None, 1], 'int64', name='label')] optim = fluid.optimizer.SGD(learning_rate=0.001, parameter_list=model.parameters()) model.prepare( inputs=inputs, optimizer=optim, loss_function=CrossEntropy(average=False), labels=labels) model.load(path + '/test') shutil.rmtree(path) def test_static_save_dynamic_load(self): path = tempfile.mkdtemp() model = MyModel() inputs = [Input([None, 20], 'float32', name='x')] labels = [Input([None, 1], 'int64', name='label')] optim = fluid.optimizer.SGD(learning_rate=0.001, parameter_list=model.parameters()) model.prepare( inputs=inputs, optimizer=optim, loss_function=CrossEntropy(average=False), labels=labels) model.save(path + '/test') device = set_device('cpu') fluid.enable_dygraph(device) #if dynamic else None model = MyModel() inputs = [Input([None, 20], 'float32', name='x')] labels = [Input([None, 1], 'int64', name='label')] optim = fluid.optimizer.SGD(learning_rate=0.001, parameter_list=model.parameters()) model.prepare( inputs=inputs, optimizer=optim, loss_function=CrossEntropy(average=False), labels=labels) model.load(path + '/test') shutil.rmtree(path) fluid.disable_dygraph() def test_parameters(self): for dynamic in [True, False]: device = set_device('cpu') fluid.enable_dygraph(device) if dynamic else None model = MyModel() inputs = [Input([None, 20], 'float32', name='x')] model.prepare(inputs=inputs) params = model.parameters() self.assertTrue(params[0].shape[0] == 20) self.assertTrue(params[0].shape[1] == 10) fluid.disable_dygraph() if dynamic else None def test_export_deploy_model(self): model = LeNet() inputs = [Input([-1, 1, 28, 28], 'float32', name='image')] model.prepare(inputs=inputs) save_dir = tempfile.mkdtemp() if not os.path.exists(save_dir): os.makedirs(save_dir) tensor_img = np.array( np.random.random((1, 1, 28, 28)), dtype=np.float32) ori_results = model.test_batch(tensor_img) model.save_inference_model(save_dir) place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda( ) else fluid.CUDAPlace(0) exe = fluid.Executor(place) [inference_program, feed_target_names, fetch_targets] = ( fluid.io.load_inference_model( dirname=save_dir, executor=exe)) results = exe.run(inference_program, feed={feed_target_names[0]: tensor_img}, fetch_list=fetch_targets) np.testing.assert_allclose(results, ori_results) shutil.rmtree(save_dir) if __name__ == '__main__': unittest.main()