# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A fake model with multiple FC layers to test CINN on a more complex model. """ import numpy import sys, os import numpy as np import paddle import paddle.fluid as fluid size = 2 num_layers = 4 paddle.enable_static() a = fluid.layers.data(name="A", shape=[-1, size], dtype='float32') label = fluid.layers.data(name="label", shape=[size], dtype='float32') fc_out = fluid.layers.fc(input=a, size=size, act="relu", bias_attr=fluid.ParamAttr(name="fc_bias"), num_flatten_dims=1) for i in range(num_layers - 1): fc_out = fluid.layers.fc(input=fc_out, size=size, act="relu", bias_attr=fluid.ParamAttr(name="fc_bias"), num_flatten_dims=1) cost = fluid.layers.square_error_cost(fc_out, label) avg_cost = fluid.layers.mean(cost) optimizer = fluid.optimizer.SGD(learning_rate=0.001) optimizer.minimize(avg_cost) cpu = fluid.core.CPUPlace() loss = exe = fluid.Executor(cpu) exe.run(fluid.default_startup_program()) fluid.io.save_inference_model("./multi_fc_model", [a.name], [fc_out], exe) print('output name', fc_out.name)