// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/sparse/fused_attention_grad_kernel.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/math_cuda_utils.h" #include "paddle/phi/kernels/funcs/sparse/sparse_blas.h" #include "paddle/phi/kernels/sparse/empty_kernel.h" #include "paddle/phi/kernels/sparse/matmul_grad_kernel.h" namespace phi { namespace sparse { template __global__ void AttnSoftmaxGpuGradKernel(const int64_t* out_crows, const T* out_values, const T* dout_values, T* dx_values, int M, int total_row_num, float scale, int batch_nnz) { // dx = (dout - sum(dout * out)) * out int row = blockIdx.x * blockDim.y + threadIdx.y; if (row >= total_row_num) return; int cur_batch = row / M; int crow_idx = cur_batch * (M + 1) + (row % M); int row_first = cur_batch * batch_nnz + static_cast(out_crows[crow_idx]); int row_nnz = static_cast(out_crows[crow_idx + 1] - out_crows[crow_idx]); if (row_nnz == 0) return; T mul = 0; for (int idx = threadIdx.x; idx < row_nnz; idx += blockDim.x) { mul += out_values[row_first + idx] * dout_values[row_first + idx]; } T mul_sum = phi::funcs::warpReduceSum(mul, 0xFFFFFFFF); for (int idx = threadIdx.x; idx < row_nnz; idx += blockDim.x) { dx_values[row_first + idx] = (dout_values[row_first + idx] - mul_sum) * out_values[row_first + idx] / scale; } } template void FusedAttentionCsrGradKernel(const Context& dev_ctx, const DenseTensor& query, const DenseTensor& key, const DenseTensor& value, const SparseCsrTensor& softmax, const DenseTensor& dout, DenseTensor* dquery, DenseTensor* dkey, DenseTensor* dvalue) { #if CUDA_VERSION >= 11070 /* Step1: Forward: softmax{CSR} * value{Dense} -> out{Dense}, reuse */ SparseCsrTensor dsoftmax; MatmulCsrDenseGradKernel( dev_ctx, softmax, value, dout, &dsoftmax, dvalue); /* Step2: Calculate grad of sdd_result, manualy not reuse */ SparseCsrTensor d_sdd_result; EmptyLikeCsrKernel(dev_ctx, dsoftmax, &d_sdd_result); auto q_dim = query.dims(); auto q_rank = q_dim.size(); int total_row_num = 1; int batch_num = 1; for (int i = 0; i < q_rank - 1; ++i) { total_row_num *= q_dim[i]; if (i < q_rank - 2) { batch_num *= q_dim[i]; } } int M = q_dim[q_rank - 2]; int N = q_dim[q_rank - 1]; int batch_nnz = softmax.nnz() / batch_num; dim3 grid((total_row_num + 7) / 8); dim3 block(WARP_SIZE, 8); AttnSoftmaxGpuGradKernel<<>>( softmax.crows().data(), softmax.values().data(), dsoftmax.mutable_values()->data(), d_sdd_result.mutable_values()->data(), M, total_row_num, std::sqrt(N), batch_nnz); /* Step3: Forward: query{Dense} * key'{Dense} -> sdd_result{SparseCsr} */ auto sparse_blas = phi::funcs::sparse::GetSparseBlas(dev_ctx); // dquery{Dense} = d_sdd_result{SparseCsr} * key{Dense} // dquery->Resize(query.dims()); dev_ctx.template Alloc(dquery); sparse_blas.SPMM(false, false, static_cast(1.f), d_sdd_result, key, static_cast(0.f), dquery); // dkey{Dense} = d_sdd_result'{SparseCsr} * query{Dense} // dkey->Resize(key.dims()); dev_ctx.template Alloc(dkey); sparse_blas.SPMM(true, false, static_cast(1.f), d_sdd_result, query, static_cast(0.f), dkey); #else PADDLE_THROW( phi::errors::Unimplemented("backward of 'sparse.nn.functional.attention' " "use 'cusparseCsrSetStridedBatch', which is " "completed supported from CUDA 11.7")); #endif } } // namespace sparse } // namespace phi PD_REGISTER_KERNEL(fused_attention_csr_grad, GPU, ALL_LAYOUT, phi::sparse::FusedAttentionCsrGradKernel, float, double) { kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR); }