Quick Start ============ Quick Install ------------- You can use pip to install PaddlePaddle with a single command, supports CentOS 6 above, Ubuntu 14.04 above or MacOS 10.12, with Python 2.7 installed. Simply run the following command to install, the version is cpu_avx_openblas: .. code-block:: bash pip install paddlepaddle If you need to install GPU version (cuda7.5_cudnn5_avx_openblas), run: .. code-block:: bash pip install paddlepaddle-gpu For more details about installation and build: :ref:`install_steps` . Quick Use --------- Create a new file called housing.py, and paste this Python code: .. code-block:: python import sys import math import numpy import paddle.fluid as fluid import paddle.fluid.core as core import paddle def train(save_dirname): x = fluid.layers.data(name='x', shape=[13], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) y = fluid.layers.data(name='y', shape=[1], dtype='float32') cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_cost = fluid.layers.mean(cost) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) BATCH_SIZE = 20 train_reader = paddle.batch( paddle.reader.shuffle(paddle.dataset.uci_housing.train(), buf_size=500), batch_size=BATCH_SIZE) place = fluid.CPUPlace() exe = fluid.Executor(place) feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe.run(fluid.default_startup_program()) main_program = fluid.default_main_program() PASS_NUM = 100 for pass_id in range(PASS_NUM): for data in train_reader(): avg_loss_value, = exe.run(main_program, feed=feeder.feed(data), fetch_list=[avg_cost]) if avg_loss_value[0] < 10.0: if save_dirname is not None: fluid.io.save_inference_model(save_dirname, ['x'], [y_predict], exe) return if math.isnan(float(avg_loss_value)): sys.exit("got NaN loss, training failed.") raise AssertionError("Fit a line cost is too large, {0:2.2}".format( avg_loss_value[0])) def infer(save_dirname): place = fluid.CPUPlace() exe = fluid.Executor(place) probs = [] inference_scope = fluid.core.Scope() with fluid.scope_guard(inference_scope): # Use fluid.io.load_inference_model to obtain the inference program desc, # the feed_target_names (the names of variables that will be feeded # data using feed operators), and the fetch_targets (variables that # we want to obtain data from using fetch operators). [inference_program, feed_target_names, fetch_targets] = fluid.io.load_inference_model(save_dirname, exe) # The input's dimension should be 2-D and the second dim is 13 # The input data should be >= 0 batch_size = 10 tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32") assert feed_target_names[0] == 'x' results = exe.run(inference_program, feed={feed_target_names[0]: tensor_x}, fetch_list=fetch_targets) probs.append(results) for i in xrange(len(probs)): print(probs[i][0] * 1000) print('Predicted price: ${0}'.format(probs[i][0] * 1000)) def main(): # Directory for saving the trained model save_dirname = "fit_a_line.inference.model" train(save_dirname) infer(save_dirname) if __name__=="__main__": main() Run :code:`python housing.py` and voila! It should print out a list of predictions for the test housing data.