/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/memory/memory.h" #include "paddle/fluid/operators/roi_align_op.h" #include "paddle/fluid/platform/device/gpu/gpu_launch_config.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; static constexpr int kNumCUDAThreads = 512; static constexpr int kNumMaxinumNumBlocks = 4096; static constexpr int kROISize = 4; static inline int NumBlocks(const int N) { return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads, kNumMaxinumNumBlocks); } template __device__ void BilinearInterpolateGradient(const int height, const int width, T y, T x, T* w1, T* w2, T* w3, T* w4, int* x_low, int* x_high, int* y_low, int* y_high) { if (y < -1.0 || y > height || x < -1.0 || x > width) { return; } y = y <= 0 ? 0 : y; x = x <= 0 ? 0 : x; *y_low = static_cast(y); *x_low = static_cast(x); if (*y_low >= height - 1) { *y_high = *y_low = height - 1; y = static_cast(*y_low); } else { *y_high = *y_low + 1; } if (*x_low >= width - 1) { *x_high = *x_low = width - 1; x = static_cast(*x_low); } else { *x_high = *x_low + 1; } T ly = y - *y_low, lx = x - *x_low; T hy = 1. - ly, hx = 1. - lx; *w1 = hy * hx, *w2 = hy * lx, *w3 = ly * hx, *w4 = ly * lx; return; } template __global__ void GPUROIAlignBackward( const int nthreads, const T* input_rois, const T* out_grad, const int num_rois, const float spatial_scale, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const int sampling_ratio, int* roi_batch_id_data, T* input_grad, const bool continuous_coordinate) { CUDA_KERNEL_LOOP(i, nthreads) { int pw = i % pooled_width; int ph = (i / pooled_width) % pooled_height; int c = (i / pooled_width / pooled_height) % channels; int n = i / pooled_width / pooled_height / channels; const T* offset_input_rois = input_rois + n * kROISize; int roi_batch_ind = roi_batch_id_data[n]; T roi_offset = continuous_coordinate ? T(0.5) : 0; T roi_xmin = offset_input_rois[0] * spatial_scale - roi_offset; T roi_ymin = offset_input_rois[1] * spatial_scale - roi_offset; T roi_xmax = offset_input_rois[2] * spatial_scale - roi_offset; T roi_ymax = offset_input_rois[3] * spatial_scale - roi_offset; T roi_width = roi_xmax - roi_xmin; T roi_height = roi_ymax - roi_ymin; if (!continuous_coordinate) { roi_width = max(roi_width, static_cast(1.)); roi_height = max(roi_height, static_cast(1.)); } T bin_size_h = static_cast(roi_height) / static_cast(pooled_height); T bin_size_w = static_cast(roi_width) / static_cast(pooled_width); T* offset_input_grad = input_grad + (roi_batch_ind * channels + c) * height * width; const T* offset_out_grad = out_grad + (n * channels + c) * pooled_height * pooled_width; const T out_grad_this_bin = offset_out_grad[ph * pooled_width + pw]; int roi_bin_grid_h = (sampling_ratio > 0) ? sampling_ratio : ceil(roi_height / pooled_height); int roi_bin_grid_w = (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); const T count = roi_bin_grid_h * roi_bin_grid_w; for (int iy = 0; iy < roi_bin_grid_h; iy++) { const T y = roi_ymin + ph * bin_size_h + static_cast(iy + .5f) * bin_size_h / static_cast(roi_bin_grid_h); for (int ix = 0; ix < roi_bin_grid_w; ix++) { const T x = roi_xmin + pw * bin_size_w + static_cast(ix + .5f) * bin_size_w / static_cast(roi_bin_grid_w); T w1 = 0, w2 = 0, w3 = 0, w4 = 0; int x_low = -1, x_high = -1, y_low = -1, y_high = -1; BilinearInterpolateGradient(height, width, y, x, &w1, &w2, &w3, &w4, &x_low, &x_high, &y_low, &y_high); T diff1 = out_grad_this_bin * w1 / count; T diff2 = out_grad_this_bin * w2 / count; T diff3 = out_grad_this_bin * w3 / count; T diff4 = out_grad_this_bin * w4 / count; if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) { platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_low, diff1); platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_high, diff2); platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_low, diff3); platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_high, diff4); } } } } } template class GPUROIAlignGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* in = ctx.Input("X"); auto* rois = ctx.Input("ROIs"); auto* out_grad = ctx.Input(framework::GradVarName("Out")); auto* in_grad = ctx.Output(framework::GradVarName("X")); auto pooled_height = ctx.Attr("pooled_height"); auto pooled_width = ctx.Attr("pooled_width"); auto spatial_scale = ctx.Attr("spatial_scale"); auto sampling_ratio = ctx.Attr("sampling_ratio"); auto aligned = ctx.Attr("aligned"); int rois_num = rois->dims()[0]; int channels = in->dims()[1]; int height = in->dims()[2]; int width = in->dims()[3]; if (!in_grad) { return; } Tensor roi_batch_id_list; roi_batch_id_list.Resize({rois_num}); auto cplace = platform::CPUPlace(); int* roi_batch_id_data = roi_batch_id_list.mutable_data(cplace); auto& dev_ctx = ctx.cuda_device_context(); auto gplace = ctx.GetPlace(); if (ctx.HasInput("RoisNum")) { auto* rois_num_t = ctx.Input("RoisNum"); int rois_batch_size = rois_num_t->numel(); std::vector rois_num_list(rois_batch_size); memory::Copy(cplace, rois_num_list.data(), gplace, rois_num_t->data(), sizeof(int) * rois_batch_size, 0); int start = 0; for (int n = 0; n < rois_batch_size; ++n) { for (size_t i = start; i < start + rois_num_list[n]; ++i) { roi_batch_id_data[i] = n; } start += rois_num_list[n]; } } else { auto rois_lod = rois->lod().back(); int rois_batch_size = rois_lod.size() - 1; for (int n = 0; n < rois_batch_size; ++n) { for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) { roi_batch_id_data[i] = n; } } } auto roi_ptr = memory::Alloc(dev_ctx, roi_batch_id_list.numel() * sizeof(int)); int* roi_id_data = reinterpret_cast(roi_ptr->ptr()); int bytes = roi_batch_id_list.numel() * sizeof(int); memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes, dev_ctx.stream()); in_grad->mutable_data(ctx.GetPlace()); phi::funcs::SetConstant set_zero; set_zero(dev_ctx, in_grad, static_cast(0)); int output_grad_size = out_grad->numel(); int blocks = NumBlocks(output_grad_size); int threads = kNumCUDAThreads; if (output_grad_size > 0) { GPUROIAlignBackward<<>>( output_grad_size, rois->data(), out_grad->data(), rois_num, spatial_scale, channels, height, width, pooled_height, pooled_width, sampling_ratio, roi_id_data, in_grad->mutable_data(ctx.GetPlace()), aligned); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( roi_align_grad, ops::GPUROIAlignGradOpKernel, ops::GPUROIAlignGradOpKernel);