# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ WMT14 dataset. The original WMT14 dataset is too large and a small set of data for set is provided. This module will download dataset from http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz and parse training set and test set into paddle reader creators. """ import tarfile import gzip from paddle.v2.dataset.common import download from paddle.v2.parameters import Parameters __all__ = ['train', 'test', 'build_dict'] URL_DEV_TEST = 'http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/dev+test.tgz' MD5_DEV_TEST = '7d7897317ddd8ba0ae5c5fa7248d3ff5' # this is a small set of data for test. The original data is too large and will be add later. URL_TRAIN = 'http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz' MD5_TRAIN = 'a755315dd01c2c35bde29a744ede23a6' # this is the pretrained model, whose bleu = 26.92 URL_MODEL = 'http://paddlepaddle.bj.bcebos.com/demo/wmt_14/wmt14_model.tar.gz' MD5_MODEL = '4ce14a26607fb8a1cc23bcdedb1895e4' START = "" END = "" UNK = "" UNK_IDX = 2 def __read_to_dict__(tar_file, dict_size): def __to_dict__(fd, size): out_dict = dict() for line_count, line in enumerate(fd): if line_count < size: out_dict[line.strip()] = line_count else: break return out_dict with tarfile.open(tar_file, mode='r') as f: names = [ each_item.name for each_item in f if each_item.name.endswith("src.dict") ] assert len(names) == 1 src_dict = __to_dict__(f.extractfile(names[0]), dict_size) names = [ each_item.name for each_item in f if each_item.name.endswith("trg.dict") ] assert len(names) == 1 trg_dict = __to_dict__(f.extractfile(names[0]), dict_size) return src_dict, trg_dict def reader_creator(tar_file, file_name, dict_size): def reader(): src_dict, trg_dict = __read_to_dict__(tar_file, dict_size) with tarfile.open(tar_file, mode='r') as f: names = [ each_item.name for each_item in f if each_item.name.endswith(file_name) ] for name in names: for line in f.extractfile(name): line_split = line.strip().split('\t') if len(line_split) != 2: continue src_seq = line_split[0] # one source sequence src_words = src_seq.split() src_ids = [ src_dict.get(w, UNK_IDX) for w in [START] + src_words + [END] ] trg_seq = line_split[1] # one target sequence trg_words = trg_seq.split() trg_ids = [trg_dict.get(w, UNK_IDX) for w in trg_words] # remove sequence whose length > 80 in training mode if len(src_ids) > 80 or len(trg_ids) > 80: continue trg_ids_next = trg_ids + [trg_dict[END]] trg_ids = [trg_dict[START]] + trg_ids yield src_ids, trg_ids, trg_ids_next return reader def train(dict_size): """ WMT14 training set creator. It returns a reader creator, each sample in the reader is source language word ID sequence, target language word ID sequence and next word ID sequence. :return: Training reader creator :rtype: callable """ return reader_creator( download(URL_TRAIN, 'wmt14', MD5_TRAIN), 'train/train', dict_size) def test(dict_size): """ WMT14 test set creator. It returns a reader creator, each sample in the reader is source language word ID sequence, target language word ID sequence and next word ID sequence. :return: Test reader creator :rtype: callable """ return reader_creator( download(URL_TRAIN, 'wmt14', MD5_TRAIN), 'test/test', dict_size) def model(): tar_file = download(URL_MODEL, 'wmt14', MD5_MODEL) with gzip.open(tar_file, 'r') as f: parameters = Parameters.from_tar(f) return parameters def trg_dict(dict_size): tar_file = download(URL_TRAIN, 'wmt14', MD5_TRAIN) src_dict, trg_dict = __read_to_dict__(tar_file, dict_size) return trg_dict def fetch(): download(URL_TRAIN, 'wmt14', MD5_TRAIN) download(URL_MODEL, 'wmt14', MD5_MODEL)