/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/common/place.h" #include "paddle/phi/kernels/copy_kernel.h" #include "paddle/phi/kernels/sparse/convolution_grad_kernel.h" #include "paddle/phi/kernels/sparse/convolution_kernel.h" #include "paddle/fluid/memory/allocation/allocator_facade.h" #include "paddle/phi/api/lib/utils/allocator.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { namespace tests { std::vector flatten(const std::vector>& in) { std::vector out; if (in.size() == 0) return out; const int cols = in[0].size(); out.resize(in.size() * cols); for (uint64_t i = 0; i < in.size(); i++) { memcpy(&out[i * cols], in[i].data(), cols * sizeof(int)); } return out; } template std::vector cast(const std::vector& in) { std::vector out(in.size()); for (uint64_t i = 0; i < in.size(); i++) { out[i] = static_cast(in[i]); } return out; } template void TestConv3dBase(const std::vector& indices, const std::vector& features, const DDim& x_dims, const std::vector& kernel, const DDim& kernel_dims, const std::vector& correct_out_indices, const std::vector& correct_out_features, const DDim& correct_out_dims, const int non_zero_num, const std::vector& paddings, const std::vector& strides, const std::vector& dilations, const float diff = 1e-3, const bool backward = false, const std::vector features_grad = {}, const std::vector kernel_grad = {}, const bool subm = false) { phi::CPUContext dev_ctx_cpu; dev_ctx_cpu.SetAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CPUPlace()) .get()); dev_ctx_cpu.Init(); const int in_channels = kernel_dims[3]; const int out_channels = kernel_dims[4]; DenseTensor indices_tensor = phi::Empty( dev_ctx_cpu, DenseTensorMeta(DataType::INT32, {4, non_zero_num}, DataLayout::NCHW)); memcpy( indices_tensor.data(), indices.data(), indices.size() * sizeof(int)); DenseTensor features_tensor = phi::Empty( dev_ctx_cpu, DenseTensorMeta(paddle::experimental::CppTypeToDataType::Type(), {non_zero_num, in_channels}, DataLayout::NHWC)); memcpy( features_tensor.data(), features.data(), features.size() * sizeof(T)); SparseCooTensor x_tensor(indices_tensor, features_tensor, x_dims); DenseTensor kernel_tensor = phi::Empty( dev_ctx_cpu, DenseTensorMeta(paddle::experimental::CppTypeToDataType::Type(), kernel_dims, DataLayout::NHWC)); memcpy(kernel_tensor.data(), kernel.data(), kernel.size() * sizeof(T)); auto f_verify = [&](const T* real_data, const std::vector& correct_data) { for (uint64_t i = 0; i < correct_data.size(); i++) { float tmp = std::fabs(static_cast(correct_data[i] - real_data[i])); ASSERT_LT(tmp, diff); } }; if (!std::is_same::value) { DenseTensor rulebook = phi::Empty( dev_ctx_cpu, DenseTensorMeta(DataType::INT32, {1}, DataLayout::NCHW)); SparseCooTensor out = sparse::Conv3d(dev_ctx_cpu, x_tensor, kernel_tensor, paddings, dilations, strides, 1, subm, &rulebook); ASSERT_EQ(correct_out_dims.size(), out.dims().size()); for (int i = 0; i < correct_out_dims.size(); i++) { ASSERT_EQ(correct_out_dims[i], out.dims()[i]); } ASSERT_EQ((int64_t)correct_out_features.size() / out_channels, out.nnz()); int cmp_indices = memcmp(correct_out_indices.data(), out.non_zero_indices().data(), correct_out_indices.size() * sizeof(int)); ASSERT_EQ(cmp_indices, 0); f_verify(out.non_zero_elements().data(), correct_out_features); if (backward) { std::vector grads = sparse::Conv3dGrad(dev_ctx_cpu, x_tensor, rulebook, kernel_tensor, out, paddings, dilations, strides, 1, subm); f_verify(grads[0].data(), features_grad); f_verify(grads[1].data(), kernel_grad); } } // test gpu #if defined(PADDLE_WITH_CUDA) phi::GPUContext dev_ctx_gpu; dev_ctx_gpu.PartialInitWithoutAllocator(); dev_ctx_gpu.SetAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(dev_ctx_gpu.GetPlace(), dev_ctx_gpu.stream()) .get()); dev_ctx_gpu.SetHostAllocator( paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(phi::CPUPlace()) .get()); dev_ctx_gpu.PartialInitWithAllocator(); DenseTensor d_indices_tensor = phi::Empty( dev_ctx_gpu, DenseTensorMeta(DataType::INT32, {4, non_zero_num}, DataLayout::NCHW)); phi::Copy( dev_ctx_gpu, indices_tensor, phi::GPUPlace(), true, &d_indices_tensor); DenseTensor d_features_tensor = phi::Empty( dev_ctx_gpu, DenseTensorMeta(paddle::experimental::CppTypeToDataType::Type(), {non_zero_num, in_channels}, DataLayout::NHWC)); phi::Copy( dev_ctx_gpu, features_tensor, phi::GPUPlace(), true, &d_features_tensor); SparseCooTensor d_x_tensor(d_indices_tensor, d_features_tensor, x_dims); DenseTensor d_kernel_tensor = phi::Empty( dev_ctx_gpu, DenseTensorMeta(paddle::experimental::CppTypeToDataType::Type(), kernel_dims, DataLayout::NHWC)); phi::Copy( dev_ctx_gpu, kernel_tensor, phi::GPUPlace(), true, &d_kernel_tensor); DenseTensor d_rulebook = phi::Empty( dev_ctx_gpu, DenseTensorMeta(DataType::INT32, {1}, DataLayout::NCHW)); SparseCooTensor d_out = sparse::Conv3d(dev_ctx_gpu, d_x_tensor, d_kernel_tensor, paddings, dilations, strides, 1, subm, &d_rulebook); ASSERT_EQ(correct_out_dims.size(), d_out.dims().size()); ASSERT_EQ((int64_t)correct_out_features.size() / out_channels, d_out.nnz()); for (int i = 0; i < correct_out_dims.size(); i++) { ASSERT_EQ(correct_out_dims[i], d_out.dims()[i]); } DenseTensor h_indices_tensor = phi::Empty( dev_ctx_cpu, DenseTensorMeta(DataType::INT32, {4, d_out.nnz()}, DataLayout::NCHW)); phi::Copy(dev_ctx_gpu, d_out.non_zero_indices(), phi::CPUPlace(), true, &h_indices_tensor); int cmp_indices2 = memcmp(correct_out_indices.data(), h_indices_tensor.data(), correct_out_indices.size() * sizeof(int)); ASSERT_EQ(cmp_indices2, 0); DenseTensor h_features_tensor = phi::Empty( dev_ctx_cpu, DenseTensorMeta(paddle::experimental::CppTypeToDataType::Type(), {d_out.nnz()}, d_out.layout())); phi::Copy(dev_ctx_gpu, d_out.non_zero_elements(), phi::CPUPlace(), true, &h_features_tensor); f_verify(h_features_tensor.data(), correct_out_features); if (backward) { std::vector grads = sparse::Conv3dGrad(dev_ctx_gpu, d_x_tensor, d_rulebook, d_kernel_tensor, d_out, paddings, dilations, strides, 1, subm); DenseTensor h_features_grad = phi::Empty( dev_ctx_cpu, DenseTensorMeta(grads[0].dtype(), grads[0].dims(), grads[0].layout())); phi::Copy(dev_ctx_gpu, grads[0], phi::CPUPlace(), true, &h_features_grad); f_verify(h_features_grad.data(), features_grad); DenseTensor h_kernel_grad = phi::Empty( dev_ctx_cpu, DenseTensorMeta(grads[1].dtype(), grads[1].dims(), grads[1].layout())); phi::Copy(dev_ctx_gpu, grads[1], phi::CPUPlace(), true, &h_kernel_grad); f_verify(h_kernel_grad.data(), kernel_grad); } #endif } void TestConv3d(const std::vector& indices, const std::vector& features, const DDim& x_dims, const std::vector& kernel, const DDim& kernel_dims, const std::vector& correct_out_indices, const std::vector& correct_out_features, const DDim& correct_out_dims, const int non_zero_num, const std::vector& paddings, const std::vector& strides, const std::vector& dilations, const float diff = 1e-3, const bool backward = false, const std::vector features_grad = {}, const std::vector kernel_grad = {}, const bool subm = false) { // test float TestConv3dBase(indices, features, x_dims, kernel, kernel_dims, correct_out_indices, correct_out_features, correct_out_dims, non_zero_num, paddings, strides, dilations, diff, backward, features_grad, kernel_grad, subm); // test double TestConv3dBase(indices, cast(features), x_dims, cast(kernel), kernel_dims, correct_out_indices, cast(correct_out_features), correct_out_dims, non_zero_num, paddings, strides, dilations, diff, backward, cast(features_grad), cast(kernel_grad), subm); } TEST(DEV_API, sparse_conv3d) { const int in_channels = 1; const int out_channels = 1; DDim x_dims = {1, 4, 4, 4, in_channels}; DDim kernel_dims = {3, 3, 3, in_channels, out_channels}; DDim out_dims = {1, 2, 2, 2, out_channels}; std::vector paddings = {0, 0, 0}; std::vector strides = {1, 1, 1}; std::vector dilations = {1, 1, 1}; const int non_zero_num = 4; std::vector> indices = { {0, 0, 0, 0}, {0, 2, 0, 2}, {3, 2, 2, 3}, {3, 2, 3, 2}}; std::vector indices_flatten = flatten(indices); std::vector features = {-0.2883, 0.0287, 0.2864, -0.0992}; // 3*3*3=27 std::vector kernel = { 0.4721, 0.2292, 0.9751, 0.8616, 0.5784, 0.9178, 0.8727, 0.1659, 0.4455, 0.0189, 0.4646, 0.4472, 0.1991, 0.8968, 0.3717, 0.0051, 0.6963, 0.2690, 0.7473, 0.5403, 0.5391, 0.0796, 0.4734, 0.9097, 0.1712, 0.6237, 0.8837}; std::vector> out_indices = {{0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 1, 1, 1}, {0, 0, 1, 1, 0, 0, 1, 1}, {0, 1, 0, 1, 0, 1, 0, 1}}; std::vector out_indices_flatten = flatten(out_indices); std::vector out_features = { 0.0254, 0.1455, -0.0615, 0.0862, 0.0077, 0.0200, -0.0160, -0.0433}; TestConv3d(indices_flatten, features, x_dims, kernel, kernel_dims, out_indices_flatten, out_features, out_dims, non_zero_num, paddings, strides, dilations); } TEST(DEV_API, sparse_conv3d_batch) { const int in_channels = 1; const int out_channels = 1; DDim x_dims = {2, 4, 4, 4, in_channels}; DDim kernel_dims = {3, 3, 3, in_channels, out_channels}; DDim out_dims = {2, 2, 2, 2, out_channels}; std::vector paddings = {0, 0, 0}; std::vector strides = {1, 1, 1}; std::vector dilations = {1, 1, 1}; const int non_zero_num = 8; std::vector> indices = {{0, 0, 0, 0, 1, 1, 1, 1}, {0, 2, 0, 2, 0, 2, 0, 2}, {3, 2, 2, 3, 3, 2, 2, 3}, {3, 2, 3, 2, 3, 2, 3, 2}}; std::vector indices_flatten = flatten(indices); std::vector features = { -0.2883, 0.0287, 0.2864, -0.0992, -0.2883, 0.0287, 0.2864, -0.0992}; // 3*3*3=27 std::vector kernel = { 0.4721, 0.2292, 0.9751, 0.8616, 0.5784, 0.9178, 0.8727, 0.1659, 0.4455, 0.0189, 0.4646, 0.4472, 0.1991, 0.8968, 0.3717, 0.0051, 0.6963, 0.2690, 0.7473, 0.5403, 0.5391, 0.0796, 0.4734, 0.9097, 0.1712, 0.6237, 0.8837}; std::vector> out_indices = { {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1}, {0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1}, {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}}; std::vector out_indices_flatten = flatten(out_indices); std::vector out_features = {0.0254, 0.1455, -0.0615, 0.0862, 0.0077, 0.0200, -0.0160, -0.0433, 0.0254, 0.1455, -0.0615, 0.0862, 0.0077, 0.0200, -0.0160, -0.0433}; TestConv3d(indices_flatten, features, x_dims, kernel, kernel_dims, out_indices_flatten, out_features, out_dims, non_zero_num, paddings, strides, dilations); } TEST(DEV_API, sparse_conv3d_stride) { const int in_channels = 1; const int out_channels = 1; DDim x_dims = {1, 4, 4, 4, in_channels}; DDim kernel_dims = {3, 3, 3, in_channels, out_channels}; DDim out_dims = {1, 1, 1, 1, out_channels}; std::vector paddings = {0, 0, 0}; std::vector strides = {2, 2, 2}; std::vector dilations = {1, 1, 1}; const int non_zero_num = 3; std::vector> indices = { {0, 0, 0}, {0, 2, 0}, {3, 2, 2}, {3, 2, 3}}; std::vector indices_flatten = flatten(indices); std::vector features = {-0.28833008, 0.02873230, 0.28637695}; // 3*3*3=27 std::vector kernel = { 0.45043945, 0.47216797, 0.22924805, 0.97509766, 0.86181641, 0.57861328, 0.91796875, 0.87255859, 0.16589355, 0.44555664, 0.01889038, 0.46459961, 0.44726562, 0.19909668, 0.89697266, 0.37158203, 0.00513077, 0.69628906, 0.26904297, 0.74707031, 0.54003906, 0.5390625, 0.07958984, 0.47338867, 0.90966797, 0.17126465, 0.62353516}; std::vector> out_indices = {{0, 0, 0, 0}}; std::vector out_indices_flatten = flatten(out_indices); std::vector out_features = {0.01791}; TestConv3d(indices_flatten, features, x_dims, kernel, kernel_dims, out_indices_flatten, out_features, out_dims, non_zero_num, paddings, strides, dilations); } TEST(DEV_API, sparse_conv3d_dilation) { const int in_channels = 1; const int out_channels = 1; DDim x_dims = {1, 6, 6, 6, in_channels}; DDim kernel_dims = {3, 3, 3, in_channels, out_channels}; DDim out_dims = {1, 2, 2, 2, out_channels}; std::vector paddings = {0, 0, 0}; std::vector strides = {1, 1, 1}; std::vector dilations = {2, 2, 2}; const int non_zero_num = 3; std::vector> indices = { {0, 0, 0}, {2, 3, 3}, {2, 3, 3}, {5, 2, 0}}; std::vector indices_flatten = flatten(indices); std::vector features = {-0.78710938, -0.64746094, 0.98828125}; // 3*3*3=27 std::vector kernel = { 0.20617676, 0.99365234, 0.16760254, 0.30639648, 0.41479492, 0.75732422, 0.65625, 0.48535156, 0.72167969, 0.56005859, 0.5, 0.3581543, 0.20324707, 0.88769531, 0.81298828, 0.58398438, 0.30810547, 0.12634277, 0.70507812, 0.38720703, 0.34814453, 0.02690125, 0.80273438, 0.90625, 0.2277832, 0.4362793, 0.44482422}; std::vector> out_indices = {{0, 0, 0, 1, 0, 1, 1, 0}}; std::vector out_indices_flatten = flatten(out_indices); std::vector out_features = {-0.64014, -0.37402}; TestConv3d(indices_flatten, features, x_dims, kernel, kernel_dims, out_indices_flatten, out_features, out_dims, non_zero_num, paddings, strides, dilations); } TEST(DEV_API, sparse_conv3d_padding) { const int in_channels = 1; const int out_channels = 1; DDim x_dims = {1, 3, 3, 3, in_channels}; DDim kernel_dims = {3, 3, 3, in_channels, out_channels}; DDim out_dims = {1, 3, 3, 3, out_channels}; std::vector paddings = {1, 1, 1}; std::vector strides = {1, 1, 1}; std::vector dilations = {1, 1, 1}; const int non_zero_num = 1; std::vector> indices = {{0, 1, 0, 0}}; std::vector indices_flatten = flatten(indices); std::vector features = {-0.79394531}; // 3*3*3=27 std::vector kernel = { 0.34375, 0.22485352, 0.65820312, 0.75048828, 0.21411133, 0.17370605, 0.85546875, 0.53076172, 0.28833008, 0.71044922, 0.00659943, 0.45922852, 0.19372559, 0.64599609, 0.78808594, 0.49316406, 0.62646484, 0.40649414, 0.62744141, 0.5703125, 0.23144531, 0.50048828, 0.31835938, 0.90869141, 0.38208008, 0.60449219, 0.09075928}; std::vector out_indices_flatten = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}; std::vector out_features = {-0.25269, -0.39746, -0.45288, -0.49805, -0.5127, -0.15381, -0.00524, -0.56396, -0.17004, -0.5957, -0.17847, -0.27295}; TestConv3d(indices_flatten, features, x_dims, kernel, kernel_dims, out_indices_flatten, out_features, out_dims, non_zero_num, paddings, strides, dilations); } TEST(DEV_API, sparse_conv2d) { const int in_channels = 1; const int out_channels = 1; DDim x_dims = {1, 1, 5, 5, in_channels}; DDim kernel_dims = {1, 3, 3, in_channels, out_channels}; DDim out_dims = {1, 1, 3, 3, out_channels}; std::vector paddings = {0, 0, 0}; std::vector strides = {1, 1, 1}; std::vector dilations = {1, 1, 1}; const int non_zero_num = 3; std::vector indices_flatten = {0, 0, 0, 0, 0, 0, 0, 4, 0, 3, 2, 4}; std::vector features = {-0.79394531, -0.3125, -0.55029297}; // 3*3*3=27 std::vector kernel = {0.65820312, 0.75048828, 0.21411133, 0.17370605, 0.85546875, 0.53076172, 0.28833008, 0.71044922, 0.00659943}; std::vector out_indices_flatten = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 2, 0, 1, 2}; std::vector out_features = { -0.17004, -0.71338, -0.00206, -0.22205, -0.09009}; TestConv3d(indices_flatten, features, x_dims, kernel, kernel_dims, out_indices_flatten, out_features, out_dims, non_zero_num, paddings, strides, dilations); } TEST(DEV_API, sparse_conv3d_backward) { const int in_channels = 1; const int out_channels = 1; DDim x_dims = {1, 4, 4, 4, in_channels}; DDim kernel_dims = {3, 3, 3, in_channels, out_channels}; DDim out_dims = {1, 2, 2, 2, out_channels}; std::vector paddings = {0, 0, 0}; std::vector strides = {1, 1, 1}; std::vector dilations = {1, 1, 1}; const int non_zero_num = 2; std::vector indices_flatten = {0, 0, 0, 2, 3, 2, 3, 2}; std::vector features = {-0.28833008, 0.0287323}; // 3*3*3=27 std::vector kernel = { 0.64306641, 0.45043945, 0.47216797, 0.22924805, 0.97509766, 0.86181641, 0.57861328, 0.91796875, 0.87255859, 0.16589355, 0.44555664, 0.01889038, 0.46459961, 0.44726562, 0.19909668, 0.89697266, 0.37158203, 0.00513077, 0.69628906, 0.26904297, 0.74707031, 0.54003906, 0.5390625, 0.07958984, 0.47338867, 0.90966797, 0.17126465}; std::vector out_indices_flatten = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1}; std::vector out_features = {4.9200e-03, 2.6140e-02, 2.2900e-03, -2.3596e-01, 1.5000e-04, 1.0670e-02, 5.7200e-03, 1.2850e-02}; std::vector features_grad = {-0.20593, -0.09149}; std::vector kernel_grad = { 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 6.805e-02, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 3.700e-04, 1.600e-04, 0.000e+00, 3.100e-04, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, -6.780e-03, 7.000e-05, 0.000e+00, 7.500e-04, 1.400e-04}; TestConv3d(indices_flatten, features, x_dims, kernel, kernel_dims, out_indices_flatten, out_features, out_dims, non_zero_num, paddings, strides, dilations, 1e-3, true, features_grad, kernel_grad); } TEST(DEV_API, sparse_conv2d_subm) { const int in_channels = 1; const int out_channels = 1; DDim x_dims = {1, 1, 4, 5, in_channels}; DDim kernel_dims = {1, 3, 3, in_channels, out_channels}; DDim out_dims = {1, 1, 4, 5, out_channels}; std::vector paddings = {0, 1, 1}; std::vector strides = {1, 1, 1}; std::vector dilations = {1, 1, 1}; const int non_zero_num = 4; std::vector indices_flatten = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 3, 2, 2, 3}; std::vector features = {0.8854, 0.6505, -0.1999, 0.3583}; // 3*3*3=27 std::vector kernel = { 0.9364, 0.9460, 0.6564, 0.7999, 0.2013, 0.3812, 0.5474, 0.1016, 0.3368}; std::vector out_indices_flatten = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 3, 2, 2, 3}; std::vector out_features = {0.1782, 0.2313, 0.7117, 0.5214}; std::vector features_grad = {0.0359, 1.2080, 0.5838, 0.4541}; std::vector kernel_grad = { 0.3391, 0.4630, 0.0000, -0.1042, 0.3528, 0.2550, 0.0000, -0.0462, 0.0829}; TestConv3d(indices_flatten, features, x_dims, kernel, kernel_dims, out_indices_flatten, out_features, out_dims, non_zero_num, paddings, strides, dilations, 1e-3, true, features_grad, kernel_grad, true); } TEST(DEV_API, sparse_conv3d_subm) { const int in_channels = 1; const int out_channels = 1; DDim x_dims = {1, 4, 4, 5, in_channels}; DDim kernel_dims = {3, 3, 3, in_channels, out_channels}; DDim out_dims = {1, 4, 4, 5, out_channels}; std::vector paddings = {1, 1, 1}; std::vector strides = {1, 1, 1}; std::vector dilations = {1, 1, 1}; const int non_zero_num = 3; std::vector indices_flatten = {0, 0, 0, 1, 3, 3, 2, 0, 2, 0, 3, 1}; std::vector features = {-0.9578, 0.1572, 0.1036}; // 3*3*3=27 std::vector kernel = { 0.1367, 0.4534, 0.2138, 0.8264, 0.7534, 0.3270, 0.2880, 0.1562, 0.7770, 0.6902, 0.1981, 0.1369, 0.6582, 0.7582, 0.5640, 0.8894, 0.7350, 0.1845, 0.6892, 0.3654, 0.6076, 0.0326, 0.8412, 0.5289, 0.9824, 0.8235, 0.9802}; std::vector out_indices_flatten = {0, 0, 0, 1, 3, 3, 2, 0, 2, 0, 3, 1}; std::vector out_features = {-0.7262, 0.1192, 0.0785}; std::vector features_grad = {-0.5506, 0.0904, 0.0595}; std::vector kernel_grad = { 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.7224, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000}; TestConv3d(indices_flatten, features, x_dims, kernel, kernel_dims, out_indices_flatten, out_features, out_dims, non_zero_num, paddings, strides, dilations, 1e-3, true, features_grad, kernel_grad, true); } } // namespace tests } // namespace phi