# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import re
import six
import string
import tarfile
import numpy as np
import collections
from paddle.io import Dataset
from paddle.dataset.common import _check_exists_and_download
__all__ = ['Imdb']
URL = 'https://dataset.bj.bcebos.com/imdb%2FaclImdb_v1.tar.gz'
MD5 = '7c2ac02c03563afcf9b574c7e56c153a'
class Imdb(Dataset):
"""
Implementation of `IMDB `_ dataset.
Args:
data_file(str): path to data tar file, can be set None if
:attr:`download` is True. Default None
mode(str): 'train' 'test' mode. Default 'train'.
cutoff(int): cutoff number for building word dictionary. Default 150.
download(bool): whether to download dataset automatically if
:attr:`data_file` is not set. Default True
Returns:
Dataset: instance of IMDB dataset
Examples:
.. code-block:: python
import paddle
from paddle.text.datasets import Imdb
class SimpleNet(paddle.nn.Layer):
def __init__(self):
super(SimpleNet, self).__init__()
def forward(self, doc, label):
return paddle.sum(doc), label
paddle.disable_static()
imdb = Imdb(mode='train')
for i in range(10):
doc, label = imdb[i]
doc = paddle.to_tensor(doc)
label = paddle.to_tensor(label)
model = SimpleNet()
image, label = model(doc, label)
print(doc.numpy().shape, label.numpy().shape)
"""
def __init__(self, data_file=None, mode='train', cutoff=150, download=True):
assert mode.lower() in ['train', 'test'], \
"mode should be 'train', 'test', but got {}".format(mode)
self.mode = mode.lower()
self.data_file = data_file
if self.data_file is None:
assert download, "data_file is not set and downloading automatically is disabled"
self.data_file = _check_exists_and_download(data_file, URL, MD5,
'imdb', download)
# Build a word dictionary from the corpus
self.word_idx = self._build_work_dict(cutoff)
# read dataset into memory
self._load_anno()
def _build_work_dict(self, cutoff):
word_freq = collections.defaultdict(int)
pattern = re.compile(r"aclImdb/((train)|(test))/((pos)|(neg))/.*\.txt$")
for doc in self._tokenize(pattern):
for word in doc:
word_freq[word] += 1
# Not sure if we should prune less-frequent words here.
word_freq = [x for x in six.iteritems(word_freq) if x[1] > cutoff]
dictionary = sorted(word_freq, key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*dictionary))
word_idx = dict(list(zip(words, six.moves.range(len(words)))))
word_idx[''] = len(words)
return word_idx
def _tokenize(self, pattern):
data = []
with tarfile.open(self.data_file) as tarf:
tf = tarf.next()
while tf != None:
if bool(pattern.match(tf.name)):
# newline and punctuations removal and ad-hoc tokenization.
data.append(
tarf.extractfile(tf).read().rstrip(six.b("\n\r"))
.translate(None, six.b(string.punctuation)).lower(
).split())
tf = tarf.next()
return data
def _load_anno(self):
pos_pattern = re.compile(r"aclImdb/{}/pos/.*\.txt$".format(self.mode))
neg_pattern = re.compile(r"aclImdb/{}/neg/.*\.txt$".format(self.mode))
UNK = self.word_idx['']
self.docs = []
self.labels = []
for doc in self._tokenize(pos_pattern):
self.docs.append([self.word_idx.get(w, UNK) for w in doc])
self.labels.append(0)
for doc in self._tokenize(neg_pattern):
self.docs.append([self.word_idx.get(w, UNK) for w in doc])
self.labels.append(1)
def __getitem__(self, idx):
return (np.array(self.docs[idx]), np.array([self.labels[idx]]))
def __len__(self):
return len(self.docs)