// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/phi/kernels/elementwise_kernel.h" #include "paddle/phi/kernels/funcs/elementwise_base.h" #include "paddle/phi/kernels/funcs/elementwise_functor.h" #if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__) #include "paddle/phi/kernels/funcs/broadcast_function.h" #endif namespace phi { #define DEFINE_CPU_ELEMENTWISE_OP(name) \ template \ void name##RawKernel(const Context& dev_ctx, \ const DenseTensor& x, \ const DenseTensor& y, \ int axis, \ DenseTensor* out) { \ dev_ctx.template Alloc(out); \ if (x.dims() == y.dims()) { \ SameDimsElementwiseCompute>()( \ dev_ctx, x, y, out); \ } else { \ auto x_dims = x.dims(); \ auto y_dims = y.dims(); \ if (x_dims.size() >= y_dims.size()) { \ funcs::ElementwiseCompute, T>( \ dev_ctx, x, y, axis, funcs::name##Functor(), out); \ } else { \ funcs::ElementwiseCompute, T>( \ dev_ctx, x, y, axis, funcs::Inverse##name##Functor(), out); \ } \ } \ } #define DEFINE_CUDA_ELEMENTWISE_OP(name) \ template \ void name##RawKernel(const Context& dev_ctx, \ const DenseTensor& x, \ const DenseTensor& y, \ int axis, \ DenseTensor* out) { \ std::vector inputs; \ inputs.reserve(2); \ std::vector outputs; \ outputs.reserve(1); \ inputs.emplace_back(&x); \ inputs.emplace_back(&y); \ outputs.emplace_back(out); \ dev_ctx.template Alloc(out); \ funcs::BroadcastKernel( \ dev_ctx, inputs, &outputs, axis, funcs::name##Functor()); \ } template void FMaxKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { dev_ctx.template Alloc(out); funcs::ElementwiseCompute, T, T>( dev_ctx, x, y, axis, funcs::FMaxFunctor(), out); } template void FMinKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { dev_ctx.template Alloc(out); funcs::ElementwiseCompute, T, T>( dev_ctx, x, y, axis, funcs::FMinFunctor(), out); } } // namespace phi