/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include // NOLINT #include // NOLINT #include "gflags/gflags.h" #include "paddle/fluid/inference/tests/api/tester_helper.h" namespace paddle { namespace inference { int test_predictor(const AnalysisConfig& config_in, Barrier* barrier = nullptr) { static std::mutex mutex; AnalysisConfig config{config_in}; std::unique_ptr predictor; { std::unique_lock lock(mutex); predictor = std::move(CreatePaddlePredictor(config)); } if (barrier) { barrier->Wait(); } std::vector inputs; std::vector input({1}); PaddleTensor in; in.shape = {1, 1}; in.data = PaddleBuf(static_cast(input.data()), 1 * sizeof(float)); in.dtype = PaddleDType::FLOAT32; inputs.emplace_back(in); std::vector outputs; predictor->Run(inputs, &outputs); const std::vector truth_values = { -0.00621776f, -0.00620937f, 0.00990623f, -0.0039817f, -0.00074315f, 0.61229795f, -0.00491806f, -0.00068755f, 0.18409646f, 0.30090684f}; const size_t expected_size = 1; EXPECT_EQ(outputs.size(), expected_size); float* data_o = static_cast(outputs[0].data.data()); for (size_t j = 0; j < outputs[0].data.length() / sizeof(float); ++j) { EXPECT_LT(std::abs(data_o[j] - truth_values[j]), 10e-6); } return 0; } int test_predictor_zero_copy(const AnalysisConfig& config_in, Barrier* barrier = nullptr) { static std::mutex mutex; AnalysisConfig config{config_in}; config.SwitchUseFeedFetchOps(false); std::unique_ptr predictor; { std::unique_lock lock(mutex); predictor = std::move(CreatePaddlePredictor(config)); } if (barrier) { barrier->Wait(); } std::vector input({1}); auto in_tensor = predictor->GetInputTensor(predictor->GetInputNames().front()); in_tensor->Reshape({1, 1}); in_tensor->copy_from_cpu(input.data()); predictor->ZeroCopyRun(); auto out_tensor = predictor->GetOutputTensor(predictor->GetOutputNames().front()); std::vector data_o(10); out_tensor->copy_to_cpu(data_o.data()); const std::vector truth_values = { -0.00621776f, -0.00620937f, 0.00990623f, -0.0039817f, -0.00074315f, 0.61229795f, -0.00491806f, -0.00068755f, 0.18409646f, 0.30090684f}; const size_t expected_size = 1; EXPECT_EQ(predictor->GetOutputNames().size(), expected_size); for (size_t j = 0; j < truth_values.size(); ++j) { EXPECT_LT(std::abs(data_o[j] - truth_values[j]), 10e-6); } return 0; } #ifdef PADDLE_WITH_XPU TEST(AnalysisPredictor, native_xpu) { AnalysisConfig config; config.EnableXpu(); config.SetModel(FLAGS_infer_model + "/" + "mul_model"); test_predictor(config); test_predictor_zero_copy(config); } #endif #ifdef LITE_SUBGRAPH_WITH_XPU TEST(AnalysisPredictor, lite_xpu) { AnalysisConfig config; config.EnableXpu(); config.SetModel(FLAGS_infer_model + "/" + "mul_model"); config.EnableLiteEngine(paddle::AnalysisConfig::Precision::kFloat32); test_predictor(config); test_predictor_zero_copy(config); } #endif TEST(AnalysisPredictor, lite_engine) { AnalysisConfig config; config.SetModel(FLAGS_infer_model + "/" + "mul_model"); config.EnableLiteEngine(paddle::AnalysisConfig::Precision::kFloat32); test_predictor(config); test_predictor_zero_copy(config); } } // namespace inference } // namespace paddle