# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from .op_test import OpTest def nce(input, weight, bias, sample_weight, labels, num_classes, num_sample_class): samples = [] sample_labels = [] batch_size = input.shape[0] num_true_class = labels.shape[1] for i in range(batch_size): w = 1 if sample_weight is None else sample_weight[i] for label in labels[i]: samples.append((i, label, True, w)) sample_labels.append(label) for num in range(num_sample_class): samples.append((i, num, False, w)) sample_labels.append(num) # forward bias sample_out = np.zeros(len(samples)).astype(np.float32) if bias is not None: for i in range(len(samples)): sample_out[i] = bias[samples[i][1]] # forward weight for i in range(len(samples)): sample_out[i] += np.dot(input[samples[i][0]], weight[samples[i][1]]) # forward activation sample_out = 1.0 / (1.0 + np.exp(-sample_out)) # forward cost out = np.zeros(batch_size).astype(np.float32) b = 1.0 / num_classes * num_sample_class for i in range(len(samples)): o = sample_out[i] cost = -np.log(o / (o + b)) if samples[i][2] else -np.log(b / (o + b)) out[samples[i][0]] += cost * samples[i][3] return (out[:, np.newaxis], np.array(sample_out).reshape( batch_size, num_sample_class + num_true_class), np.array(sample_labels).reshape(batch_size, num_sample_class + num_true_class)) class TestNCE(OpTest): def generate_data(self, dim, batch_size, num_classes, num_true_class, num_neg_samples): input = np.random.randn(batch_size, dim).astype(np.float32) weight = np.random.randn(num_classes, dim).astype(np.float32) bias = np.random.randn(num_classes).astype(np.float32) sample_weight = np.random.randn(batch_size).astype(np.float32) labels = np.random.randint(0, num_classes, (batch_size, num_true_class)) self.attrs = { 'num_total_classes': num_classes, 'num_neg_samples': num_neg_samples, 'custom_neg_classes': list(range(num_neg_samples)) } self.inputs = { 'Input': input, 'Label': labels, 'Weight': weight, 'Bias': bias, 'SampleWeight': sample_weight } def set_data(self): self.generate_data(5, 5, 4, 1, 2) def compute(self): out = nce(self.inputs['Input'], self.inputs['Weight'], self.inputs['Bias'], self.inputs['SampleWeight'], self.inputs['Label'], self.attrs['num_total_classes'], self.attrs['num_neg_samples']) self.outputs = { 'Cost': out[0], 'SampleLogits': out[1], 'SampleLabels': out[2] } def setUp(self): self.op_type = 'nce' self.set_data() self.compute() def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad( ["Input", "Weight", "Bias"], "Cost", max_relative_error=0.02) class TestNCECase1(TestNCE): def set_data(self): self.generate_data(10, 20, 10, 2, 5) if __name__ == '__main__': unittest.main()