# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from .op_test import OpTest def sigmoid_np(x): return 1. / (1. + np.exp(-x)) def tanh_np(x): return 2 * sigmoid_np(2. * x) - 1. class LstmUnitTest(OpTest): def setUp(self): self.op_type = "lstm_unit" x_np = np.random.normal(size=(5, 16)).astype("float64") c_np = np.random.normal(size=(5, 4)).astype("float64") i_np, f_np, o_np, j_np = np.split(x_np, 4, axis=1) forget_bias_np = 0. self.attrs = {'forget_bias': 0.} new_c = c_np * sigmoid_np(f_np + forget_bias_np) + sigmoid_np( i_np) * tanh_np(j_np) new_h = tanh_np(new_c) * sigmoid_np(o_np) self.inputs = {'X': x_np, 'C_prev': c_np} self.outputs = {'C': new_c, 'H': new_h} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X', 'C_prev'], ['C', 'H']) if __name__ == "__main__": unittest.main()