/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/platform/gpu_info.h" #include #include "gflags/gflags.h" #include "paddle/fluid/platform/cuda_device_guard.h" #ifdef PADDLE_WITH_HIP #include "paddle/fluid/platform/dynload/miopen.h" #else #include "paddle/fluid/platform/dynload/cudnn.h" #endif #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/lock_guard_ptr.h" #include "paddle/fluid/platform/macros.h" #include "paddle/fluid/platform/monitor.h" #include "paddle/fluid/string/split.h" DECLARE_double(fraction_of_gpu_memory_to_use); DECLARE_uint64(initial_gpu_memory_in_mb); DECLARE_uint64(reallocate_gpu_memory_in_mb); DECLARE_bool(enable_cublas_tensor_op_math); DECLARE_string(selected_gpus); DECLARE_uint64(gpu_memory_limit_mb); constexpr static float fraction_reserve_gpu_memory = 0.05f; USE_GPU_MEM_STAT; namespace paddle { namespace platform { int CudnnVersion() { if (!dynload::HasCUDNN()) return -1; #ifdef PADDLE_WITH_HIP size_t version_major, version_minor, version_patch; PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion( &version_major, &version_minor, &version_patch)); return version_major * 100 + version_minor * 10 + version_patch; #else return dynload::cudnnGetVersion(); #endif } static int GetCUDADeviceCountImpl() { int driverVersion = 0; #ifdef PADDLE_WITH_HIP hipError_t status = hipDriverGetVersion(&driverVersion); #else cudaError_t status = cudaDriverGetVersion(&driverVersion); #endif if (!(status == gpuSuccess && driverVersion != 0)) { // No GPU driver VLOG(2) << "GPU Driver Version can't be detected. No GPU driver!"; return 0; } #ifdef PADDLE_WITH_HIP const auto *cuda_visible_devices = std::getenv("HIP_VISIBLE_DEVICES"); #else const auto *cuda_visible_devices = std::getenv("CUDA_VISIBLE_DEVICES"); #endif if (cuda_visible_devices != nullptr) { std::string cuda_visible_devices_str(cuda_visible_devices); if (!cuda_visible_devices_str.empty()) { cuda_visible_devices_str.erase( 0, cuda_visible_devices_str.find_first_not_of('\'')); cuda_visible_devices_str.erase( cuda_visible_devices_str.find_last_not_of('\'') + 1); cuda_visible_devices_str.erase( 0, cuda_visible_devices_str.find_first_not_of('\"')); cuda_visible_devices_str.erase( cuda_visible_devices_str.find_last_not_of('\"') + 1); } if (std::all_of(cuda_visible_devices_str.begin(), cuda_visible_devices_str.end(), [](char ch) { return ch == ' '; })) { VLOG(2) << "CUDA_VISIBLE_DEVICES or HIP_VISIBLE_DEVICES is set to be " "empty. No GPU detected."; return 0; } } int count; #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_CUDA_SUCCESS(hipGetDeviceCount(&count)); #else PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetDeviceCount(&count)); #endif return count; } int GetCUDADeviceCount() { static auto dev_cnt = GetCUDADeviceCountImpl(); return dev_cnt; } /* Here is a very simple CUDA “pro tip”: cudaDeviceGetAttribute() is a much faster way to query device properties. You can see details in https://devblogs.nvidia.com/cuda-pro-tip-the-fast-way-to-query-device-properties/ */ int GetCUDAComputeCapability(int id) { PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), platform::errors::InvalidArgument( "Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", id, GetCUDADeviceCount())); int major, minor; #ifdef PADDLE_WITH_HIP auto major_error_code = hipDeviceGetAttribute( &major, hipDeviceAttributeComputeCapabilityMajor, id); auto minor_error_code = hipDeviceGetAttribute( &minor, hipDeviceAttributeComputeCapabilityMinor, id); #else auto major_error_code = cudaDeviceGetAttribute(&major, cudaDevAttrComputeCapabilityMajor, id); auto minor_error_code = cudaDeviceGetAttribute(&minor, cudaDevAttrComputeCapabilityMinor, id); #endif PADDLE_ENFORCE_CUDA_SUCCESS(major_error_code); PADDLE_ENFORCE_CUDA_SUCCESS(minor_error_code); #ifdef PADDLE_WITH_HIP return major * 100 + minor; #else return major * 10 + minor; #endif } dim3 GetGpuMaxGridDimSize(int id) { PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), platform::errors::InvalidArgument( "Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", id, GetCUDADeviceCount())); dim3 ret; int size; #ifdef PADDLE_WITH_HIP auto error_code_x = hipDeviceGetAttribute(&size, hipDeviceAttributeMaxGridDimX, id); #else auto error_code_x = cudaDeviceGetAttribute(&size, cudaDevAttrMaxGridDimX, id); #endif PADDLE_ENFORCE_CUDA_SUCCESS(error_code_x); ret.x = size; #ifdef PADDLE_WITH_HIP auto error_code_y = hipDeviceGetAttribute(&size, hipDeviceAttributeMaxGridDimY, id); #else auto error_code_y = cudaDeviceGetAttribute(&size, cudaDevAttrMaxGridDimY, id); #endif PADDLE_ENFORCE_CUDA_SUCCESS(error_code_y); ret.y = size; #ifdef PADDLE_WITH_HIP auto error_code_z = hipDeviceGetAttribute(&size, hipDeviceAttributeMaxGridDimZ, id); #else auto error_code_z = cudaDeviceGetAttribute(&size, cudaDevAttrMaxGridDimZ, id); #endif PADDLE_ENFORCE_CUDA_SUCCESS(error_code_z); ret.z = size; return ret; } int GetCUDARuntimeVersion(int id) { PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), platform::errors::InvalidArgument( "Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", id, GetCUDADeviceCount())); int runtime_version = 0; #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_CUDA_SUCCESS(hipRuntimeGetVersion(&runtime_version)); #else PADDLE_ENFORCE_CUDA_SUCCESS(cudaRuntimeGetVersion(&runtime_version)); #endif return runtime_version; } int GetCUDADriverVersion(int id) { PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), platform::errors::InvalidArgument( "Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", id, GetCUDADeviceCount())); int driver_version = 0; #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_CUDA_SUCCESS(hipDriverGetVersion(&driver_version)); #else PADDLE_ENFORCE_CUDA_SUCCESS(cudaDriverGetVersion(&driver_version)); #endif return driver_version; } bool TensorCoreAvailable() { #if !defined(PADDLE_WITH_HIP) && CUDA_VERSION >= 9000 int device = GetCurrentDeviceId(); int driver_version = GetCUDAComputeCapability(device); return driver_version >= 70; #else return false; #endif } int GetCUDAMultiProcessors(int id) { PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), platform::errors::InvalidArgument( "Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", id, GetCUDADeviceCount())); int count; #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_CUDA_SUCCESS( hipDeviceGetAttribute(&count, hipDeviceAttributeMultiprocessorCount, id)); #else PADDLE_ENFORCE_CUDA_SUCCESS( cudaDeviceGetAttribute(&count, cudaDevAttrMultiProcessorCount, id)); #endif return count; } int GetCUDAMaxThreadsPerMultiProcessor(int id) { PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), platform::errors::InvalidArgument( "Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", id, GetCUDADeviceCount())); int count; #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_CUDA_SUCCESS(hipDeviceGetAttribute( &count, hipDeviceAttributeMaxThreadsPerMultiProcessor, id)); #else PADDLE_ENFORCE_CUDA_SUCCESS(cudaDeviceGetAttribute( &count, cudaDevAttrMaxThreadsPerMultiProcessor, id)); #endif return count; } int GetCUDAMaxThreadsPerBlock(int id) { PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), platform::errors::InvalidArgument( "Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", id, GetCUDADeviceCount())); int count; #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_CUDA_SUCCESS( hipDeviceGetAttribute(&count, hipDeviceAttributeMaxThreadsPerBlock, id)); #else PADDLE_ENFORCE_CUDA_SUCCESS( cudaDeviceGetAttribute(&count, cudaDevAttrMaxThreadsPerBlock, id)); #endif return count; } int GetCurrentDeviceId() { int device_id; #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_CUDA_SUCCESS(hipGetDevice(&device_id)); #else PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetDevice(&device_id)); #endif return device_id; } //! Get a list of device ids from environment variable or use all. std::vector GetSelectedDevices() { // use user specified GPUs in single-node multi-process mode. std::vector devices; if (!FLAGS_selected_gpus.empty()) { auto devices_str = paddle::string::Split(FLAGS_selected_gpus, ','); for (auto id : devices_str) { devices.push_back(atoi(id.c_str())); } } else { int count = GetCUDADeviceCount(); for (int i = 0; i < count; ++i) { devices.push_back(i); } } return devices; } void SetDeviceId(int id) { // TODO(qijun): find a better way to cache the cuda device count PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), platform::errors::InvalidArgument( "Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", id, GetCUDADeviceCount())); #ifdef PADDLE_WITH_HIP PADDLE_RETRY_CUDA_SUCCESS(hipSetDevice(id)); #else PADDLE_RETRY_CUDA_SUCCESS(cudaSetDevice(id)); #endif } void GpuMemoryUsage(size_t *available, size_t *total) { size_t actual_available, actual_total; RecordedCudaMemGetInfo(available, total, &actual_available, &actual_total, platform::GetCurrentDeviceId()); } size_t GpuAvailableMemToAlloc() { size_t total = 0; size_t available = 0; GpuMemoryUsage(&available, &total); size_t reserving = static_cast(fraction_reserve_gpu_memory * available); // If available size is less than minimum chunk size, no usable memory exists size_t available_to_alloc = available - reserving; size_t min_chunk_size = GpuMinChunkSize(); if (available_to_alloc < min_chunk_size) { available_to_alloc = 0; } VLOG(10) << "GPU usage " << (available >> 20) << "M/" << (total >> 20) << "M, " << (available_to_alloc >> 20) << "M available to allocate"; return available_to_alloc; } size_t GpuMaxAllocSize() { return std::max(GpuInitAllocSize(), GpuReallocSize()); } static size_t GpuAllocSize(bool realloc) { size_t available_to_alloc = GpuAvailableMemToAlloc(); PADDLE_ENFORCE_GT( available_to_alloc, 0, platform::errors::ResourceExhausted("Not enough available GPU memory.")); // If FLAGS_initial_gpu_memory_in_mb is 0, then initial memory will be // allocated by fraction size_t flag_mb = realloc ? FLAGS_reallocate_gpu_memory_in_mb : FLAGS_initial_gpu_memory_in_mb; size_t alloc_bytes = (flag_mb > 0ul ? flag_mb << 20 : available_to_alloc * FLAGS_fraction_of_gpu_memory_to_use); PADDLE_ENFORCE_GE( available_to_alloc, alloc_bytes, platform::errors::ResourceExhausted("Not enough available GPU memory.")); VLOG(10) << "Alloc size is " << (alloc_bytes >> 20) << " MiB, is it Re-alloc: " << realloc; return alloc_bytes; } size_t GpuInitAllocSize() { return GpuAllocSize(/* realloc = */ false); } size_t GpuReallocSize() { return GpuAllocSize(/* realloc = */ true); } size_t GpuMinChunkSize() { // Allow to allocate the minimum chunk size is 256 bytes. return 1 << 8; } size_t GpuMaxChunkSize() { size_t max_chunk_size = GpuMaxAllocSize(); VLOG(10) << "Max chunk size " << (max_chunk_size >> 20) << "M"; return max_chunk_size; } #ifdef PADDLE_WITH_HIP void GpuMemcpyAsync(void *dst, const void *src, size_t count, enum hipMemcpyKind kind, hipStream_t stream) { PADDLE_ENFORCE_CUDA_SUCCESS(hipMemcpyAsync(dst, src, count, kind, stream)); } #else void GpuMemcpyAsync(void *dst, const void *src, size_t count, enum cudaMemcpyKind kind, cudaStream_t stream) { PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemcpyAsync(dst, src, count, kind, stream)); } #endif #ifdef PADDLE_WITH_HIP void GpuMemcpySync(void *dst, const void *src, size_t count, enum hipMemcpyKind kind) { PADDLE_ENFORCE_CUDA_SUCCESS(hipMemcpy(dst, src, count, kind)); } #else void GpuMemcpySync(void *dst, const void *src, size_t count, enum cudaMemcpyKind kind) { PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemcpy(dst, src, count, kind)); } #endif void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src, int src_device, size_t count, gpuStream_t stream) { #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_CUDA_SUCCESS( hipMemcpyPeerAsync(dst, dst_device, src, src_device, count, stream)); #else PADDLE_ENFORCE_CUDA_SUCCESS( cudaMemcpyPeerAsync(dst, dst_device, src, src_device, count, stream)); #endif } void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src, int src_device, size_t count) { #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_CUDA_SUCCESS( hipMemcpyPeer(dst, dst_device, src, src_device, count)); #else PADDLE_ENFORCE_CUDA_SUCCESS( cudaMemcpyPeer(dst, dst_device, src, src_device, count)); #endif } void GpuMemsetAsync(void *dst, int value, size_t count, gpuStream_t stream) { #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_CUDA_SUCCESS(hipMemsetAsync(dst, value, count, stream)); #else PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemsetAsync(dst, value, count, stream)); #endif } void GpuStreamSync(gpuStream_t stream) { #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_CUDA_SUCCESS(hipStreamSynchronize(stream)); #else PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream)); #endif } static void RaiseNonOutOfMemoryError(gpuError_t *status) { #ifdef PADDLE_WITH_HIP if (*status == hipErrorOutOfMemory) { *status = hipSuccess; } #else if (*status == cudaErrorMemoryAllocation) { *status = cudaSuccess; } #endif PADDLE_ENFORCE_CUDA_SUCCESS(*status); #ifdef PADDLE_WITH_HIP *status = hipGetLastError(); if (*status == hipErrorOutOfMemory) { *status = hipSuccess; } #else *status = cudaGetLastError(); if (*status == cudaErrorMemoryAllocation) { *status = cudaSuccess; } #endif PADDLE_ENFORCE_CUDA_SUCCESS(*status); } class RecordedCudaMallocHelper { private: explicit RecordedCudaMallocHelper(int dev_id, uint64_t limit_size = 0) : dev_id_(dev_id), limit_size_(limit_size) { if (NeedRecord()) { mtx_.reset(new std::mutex()); } } DISABLE_COPY_AND_ASSIGN(RecordedCudaMallocHelper); public: static RecordedCudaMallocHelper *Instance(int dev_id) { std::call_once(once_flag_, [] { int dev_cnt = GetCUDADeviceCount(); instances_.reserve(dev_cnt); for (int i = 0; i < dev_cnt; ++i) { instances_.emplace_back( new RecordedCudaMallocHelper(i, FLAGS_gpu_memory_limit_mb << 20)); } }); PADDLE_ENFORCE_GE( dev_id, 0, platform::errors::OutOfRange( "Device id must be not less than 0, but got %d.", dev_id)); PADDLE_ENFORCE_LT( dev_id, instances_.size(), platform::errors::OutOfRange("Device id %d exceeds gpu card number %d.", dev_id, instances_.size())); return instances_[dev_id].get(); } /** * Try to allocate `size` gpu memory. Only cudaErrorMemoryAllocation * or cudaSuccess would be returned, and the cudaGetLastError() flag * would be clear. */ gpuError_t Malloc(void **ptr, size_t size) { LockGuardPtr lock(mtx_); if (UNLIKELY(NeedRecord() && cur_size_ + size > limit_size_)) { #ifdef PADDLE_WITH_HIP return hipErrorOutOfMemory; #else return cudaErrorMemoryAllocation; #endif } CUDADeviceGuard guard(dev_id_); #ifdef PADDLE_WITH_HIP auto result = hipMalloc(ptr, size); #else auto result = cudaMalloc(ptr, size); #endif if (result == gpuSuccess) { if (NeedRecord()) { cur_size_ += size; } STAT_INT_ADD("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size); return gpuSuccess; } else { RaiseNonOutOfMemoryError(&result); // Non out of memory error would be raised inside // RaiseNonOutOfMemoryError. Therefore, we can // return cudaErrorMemoryAllocation directly here. #ifdef PADDLE_WITH_HIP return hipErrorOutOfMemory; #else return cudaErrorMemoryAllocation; #endif } } /** * Free gpu memory. Usually, free is not allowed to raise error. * If it does raise error, the process should be crashed. */ void Free(void *ptr, size_t size) { // Purposefully allow cudaErrorCudartUnloading, because // that is returned if you ever call cudaFree after the // driver has already shutdown. This happens only if the // process is terminating, in which case we don't care if // cudaFree succeeds. CUDADeviceGuard guard(dev_id_); #ifdef PADDLE_WITH_HIP auto err = hipFree(ptr); if (err != hipErrorDeinitialized) { #else auto err = cudaFree(ptr); if (err != cudaErrorCudartUnloading) { #endif PADDLE_ENFORCE_CUDA_SUCCESS(err); if (NeedRecord()) { std::lock_guard guard(*mtx_); cur_size_ -= size; } STAT_INT_SUB("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size); } else { #ifdef PADDLE_WITH_HIP hipGetLastError(); // clear the error flag when hipErrorDeinitialized #else cudaGetLastError(); // clear the error flag when cudaErrorCudartUnloading #endif } } bool GetMemInfo(size_t *avail, size_t *total, size_t *actual_avail, size_t *actual_total) { { CUDADeviceGuard guard(dev_id_); #ifdef PADDLE_WITH_HIP auto result = hipMemGetInfo(actual_avail, actual_total); #else auto result = cudaMemGetInfo(actual_avail, actual_total); #endif if (result != gpuSuccess) { *actual_avail = 0; } RaiseNonOutOfMemoryError(&result); } if (NeedRecord()) { std::lock_guard guard(*mtx_); *avail = std::min(*actual_avail, limit_size_ - cur_size_); *total = std::min(*actual_total, limit_size_); return *total < *actual_total; } else { *avail = *actual_avail; *total = *actual_total; return false; } } inline bool NeedRecord() const { return limit_size_ != 0; } uint64_t RecordedSize() const { LockGuardPtr lock(mtx_); return NeedRecord() ? cur_size_ : 0; } uint64_t LimitSize() const { return limit_size_; } private: const int dev_id_; const uint64_t limit_size_; uint64_t cur_size_{0}; mutable std::unique_ptr mtx_; static std::once_flag once_flag_; static std::vector> instances_; }; // NOLINT std::once_flag RecordedCudaMallocHelper::once_flag_; std::vector> RecordedCudaMallocHelper::instances_; gpuError_t RecordedCudaMalloc(void **ptr, size_t size, int dev_id) { return RecordedCudaMallocHelper::Instance(dev_id)->Malloc(ptr, size); } void RecordedCudaFree(void *p, size_t size, int dev_id) { return RecordedCudaMallocHelper::Instance(dev_id)->Free(p, size); } bool RecordedCudaMemGetInfo(size_t *avail, size_t *total, size_t *actual_avail, size_t *actual_total, int dev_id) { return RecordedCudaMallocHelper::Instance(dev_id)->GetMemInfo( avail, total, actual_avail, actual_total); } uint64_t RecordedCudaMallocSize(int dev_id) { return RecordedCudaMallocHelper::Instance(dev_id)->RecordedSize(); } bool IsCudaMallocRecorded(int dev_id) { return RecordedCudaMallocHelper::Instance(dev_id)->NeedRecord(); } } // namespace platform } // namespace paddle