// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/full_kernel.h" #include "paddle/phi/backends/xpu/xpu_context.h" #include "paddle/phi/common/bfloat16.h" #include "paddle/phi/common/complex.h" #include "paddle/phi/common/float16.h" #include "paddle/phi/common/scalar.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/visit_type.h" // See Note [ Why still include the fluid headers? ] #include "paddle/fluid/memory/memcpy.h" namespace phi { template void TensorSetConstantXPU(phi::DenseTensor* tensor, InType value, phi::Place place) { auto* begin = tensor->mutable_data(place); int64_t numel = tensor->numel(); std::unique_ptr data_cpu(new OutType[numel]); std::fill( data_cpu.get(), data_cpu.get() + numel, static_cast(value)); paddle::memory::Copy(place, begin, phi::CPUPlace(), static_cast(data_cpu.get()), numel * sizeof(OutType)); } template void FullValueXPU(const Context& dev_ctx, DenseTensor* tensor, VType val) { dev_ctx.template Alloc(tensor); PD_VISIT_ALL_TYPES(tensor->dtype(), "FullValueXPU", ([&] { TensorSetConstantXPU( tensor, val, dev_ctx.GetPlace()); })); } template void FullKernel(const Context& dev_ctx, const IntArray& shape, const Scalar& val, DataType dtype, DenseTensor* out) { out->Resize(phi::make_ddim(shape.GetData())); FullValueXPU(dev_ctx, out, val.to()); } template void FullLikeKernel(const Context& dev_ctx, const DenseTensor& x, const Scalar& val, DataType dtype, DenseTensor* out) { dev_ctx.template Alloc(out); auto value = val.to(); using XPUInTDType = typename XPUTypeTrait::Type; using CommonType = typename std::common_type< float, typename std::conditional::value, float, T>::type>::type; auto common_type_value = static_cast(value); PADDLE_ENFORCE_EQ( (common_type_value >= static_cast(std::numeric_limits::lowest())) && (common_type_value <= static_cast(std::numeric_limits::max())), true, phi::errors::InvalidArgument( "The filled value is out of range for target type, " "current kernel type is %s, the range should between %f " "and %f, but now value is %f.", typeid(T).name(), static_cast(std::numeric_limits::lowest()), static_cast(std::numeric_limits::max()), static_cast(value))); PADDLE_ENFORCE_EQ(std::isnan(value), false, phi::errors::InvalidArgument("The filled value is NaN.")); PADDLE_ENFORCE_EQ(std::isinf(value), false, phi::errors::InvalidArgument("The filled value is Inf.")); auto out_data = reinterpret_cast(out->data()); int ret = xpu::constant(dev_ctx.x_context(), out_data, out->numel(), static_cast(value)); PADDLE_ENFORCE_EQ( ret, XPU_SUCCESS, phi::errors::External("XPU CONSTANT API return wrong value[%d %s].", ret, XPUAPIErrorMsg[ret])); } } // namespace phi PD_REGISTER_KERNEL(full, XPU, ALL_LAYOUT, phi::FullKernel, float, double, uint8_t, int16_t, int, int64_t, bool, phi::dtype::float16, phi::dtype::bfloat16, phi::dtype::complex, phi::dtype::complex) {} PD_REGISTER_KERNEL(full_like, XPU, ALL_LAYOUT, phi::FullLikeKernel, float, int, int64_t, phi::dtype::float16) { kernel->InputAt(0).SetBackend(phi::Backend::ALL_BACKEND); }