// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once // CUDA and HIP use same api #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) #ifdef __NVCC__ #include "cub/cub.cuh" #endif #ifdef __HIPCC__ #include namespace cub = hipcub; #endif #include #include "paddle/fluid/memory/malloc.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/phi/backends/gpu/gpu_launch_config.h" #include "paddle/phi/core/ddim.h" #include "paddle/phi/kernels/empty_kernel.h" #include "paddle/phi/kernels/primitive/kernel_primitives.h" namespace kps = phi::kps; namespace phi { namespace funcs { using Mode = kps::details::ReduceMode; /* * Count how many of the data being processed by the current block are true * 1. Load data from global memory and cast from bool to int64_t * 2. Get result of this thread according to thread reduce * 3. Get result of this block according to block reduce * 4. first block store 0 and current result */ template struct NonZeroFunctor { HOSTDEVICE NonZeroFunctor() {} HOSTDEVICE inline T operator()(const T in) { if (in) { return static_cast(1); } else { return static_cast(0); } } }; template __device__ void GetBlockCountImpl(const InT *in, OutT *out, int num, int repeat) { InT in_data[VecSize]; OutT temp[VecSize]; OutT result = static_cast(0.0f); using Add = kps::AddFunctor; using Cast = NonZeroFunctor; int store_fix = BLOCK_ID_X + repeat * GRID_NUM_X; kps::Init(&in_data[0], static_cast(0.0f)); kps::ReadData(&in_data[0], in, num); kps::ElementwiseUnary( &temp[0], &in_data[0], Cast()); kps::Reduce( &result, &temp[0], Add(), true); kps::Reduce( &result, &result, Add(), true); if (store_fix == 0) { // first block's fix_size = 0; OutT tmp = static_cast(0.0f); kps::WriteData(out + store_fix, &tmp, 1); } // store num of this block kps::WriteData(out + store_fix + 1, &result, 1); } // Count how many data is not zero in current block template __global__ void GetBlockCountKernel(const InT *in, OutT *out, int64_t numel, int64_t main_offset) { int data_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize; int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize; int repeat = 0; for (; data_offset < main_offset; data_offset += stride) { GetBlockCountImpl( in + data_offset, out, BLOCK_NUM_X * VecSize, repeat); repeat++; // to get the real blockIdx } int num = numel - data_offset; if (num > 0) { GetBlockCountImpl( in + data_offset, out, num, repeat); } } /* * Get block num prefix us one block, VecSize must be 2 * 1. Each thread load 2 data : threadIdx.x and threadIdx.x + blockDimx.x * 2. Cumsum limitation is blockDim.x must be less than 512 */ template __device__ void CumsumImpl( const InT *in, OutT *out, OutT *pre_cumsum, int num, Functor func) { __shared__ OutT max_thread_data; OutT temp[VecSize]; InT arg[VecSize]; OutT result[VecSize]; // init data_pr kps::Init(&arg[0], static_cast(0.0f)); // set pre_cumsum kps::Init(&temp[0], *pre_cumsum); // load data to arg kps::ReadData( &arg[0], in, num, 1, BLOCK_NUM_X, 1); // block cumsum kps::Cumsum(&result[0], &arg[0], func); // result = cumsum_result + pre_cumsum kps::ElementwiseBinary( &result[0], &result[0], &temp[0], func); // get the last prefix sum if ((THREAD_ID_X == BLOCK_NUM_X - 1) && !IsBoundary) { max_thread_data = result[VecSize - 1]; } __syncthreads(); // update pre_cumsum *pre_cumsum = max_thread_data; kps::WriteData( out, &result[0], num, 1, BLOCK_NUM_X, 1); } // Compute this store_offset of this block template __global__ void CumsumOneBlock( const InT *in, OutT *out, int numel, int main_offset, Functor func) { int stride = BLOCK_NUM_X * VecSize; int offset = 0; OutT pre_cumsum = static_cast(0); for (; offset < main_offset; offset += stride) { CumsumImpl( in + offset, out + offset, &pre_cumsum, BLOCK_NUM_X * VecSize, func); } int num = numel - offset; if (num > 0) { CumsumImpl( in + offset, out + offset, &pre_cumsum, num, func); } } // where_index template struct SelectCaller { __device__ void inline operator()(OutT *out, const MT *mask_data, const InT *in, Functor func, int data_offset, int store_num, int thread_fix, int num) { int64_t in_data[VecSize]; OutT store_data[VecSize * phi::DDim::kMaxRank]; // set index kps::InitWithDataIndex(&in_data[0], data_offset); // Get store data according to mask_idt kps::OperatorTernary( store_data, mask_data, &in_data[0], func, VecSize); kps::details::WriteData(out + thread_fix, &store_data[0], store_num); } }; // masked_select template struct SelectCaller { __device__ void inline operator()(OutT *out, const MT *mask_data, const InT *in, Functor func, int data_offset, int store_num, int thread_fix, int num) { InT in_data[VecSize]; OutT store_data[VecSize * phi::DDim::kMaxRank]; kps::ReadData(&in_data[0], in, num); // Get store data according to mask_idt kps::OperatorTernary( store_data, mask_data, &in_data[0], func, VecSize); kps::details::WriteData(out + thread_fix, &store_data[0], store_num); } }; // masked_select_grad template struct SelectCaller { __device__ void inline operator()(OutT *out, const MT *mask_data, const InT *in, Functor func, int data_offset, int store_num, int thread_fix, int num) { InT in_data[VecSize]; OutT store_data[VecSize * phi::DDim::kMaxRank]; kps::details::ReadData(&in_data[0], in + thread_fix, store_num); kps::OperatorTernary( store_data, mask_data, &in_data[0], func, VecSize); kps::WriteData(out, &store_data[0], num); } }; /** * Get mask's index if mask == true */ template // SelectType = 1 Mask_select else where_index __device__ void SelectKernelImpl(OutT *out, const MT *mask, const InT *in, Functor func, int num, int data_offset, int store_rank) { const int kCVecSize = 2; // each thread cumsum 2 data using IdT = int64_t; // Set index data type using Add = kps::AddFunctor; // for cumsum using Cast = NonZeroFunctor; // for mask IdT init_idx = static_cast(0.0f); MT init_mask = static_cast(0.0f); IdT num_thread[kCVecSize]; IdT cumsum_thread[kCVecSize]; MT mask_data[VecSize]; IdT mask_idt[VecSize]; // init data_pr kps::Init(&cumsum_thread[0], init_idx); kps::Init(&num_thread[0], init_idx); kps::Init(&mask_data[0], init_mask); // Load mask kps::ReadData(&mask_data[0], mask, num); // Cast from MT to int kps::ElementwiseUnary( &mask_idt[0], &mask_data[0], Cast()); // Get the num of thread only num_thread[1] has data kps::Reduce( &num_thread[0], &mask_idt[0], Add(), true); // Get cumsum_thread cumsum from 0 to num_thread cumsum_thread[0] is the // thread_fix kps::Cumsum(&cumsum_thread[0], &num_thread[0], Add()); // get thread_fix int thread_fix = (static_cast(cumsum_thread[0] - num_thread[0]) * store_rank); // get how many data need to store int store_num = static_cast(num_thread[0]) * store_rank; // thread store num data, each thread may has different num // Get store data(index) according to mask_idt SelectCaller select; select(out, mask_data, in, func, data_offset, store_num, thread_fix, num); } template __global__ void SelectKernel(OutT *out, const MT *mask, const InT *in, CT *cumsum, Functor func, const int64_t numel, int64_t main_offset, int store_rank) { int data_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize; int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize; int repeat = 0; int size = VecSize * BLOCK_ID_X; CT block_store_offset = 0; for (; data_offset < main_offset; data_offset += stride) { // Cumsum index int idx_cumsum = repeat * GRID_NUM_X + BLOCK_ID_X; kps::details::ReadData(&block_store_offset, cumsum + idx_cumsum, 1); int out_fix = MaskData < 2 ? block_store_offset * store_rank : data_offset; int in_fix = MaskData < 2 ? data_offset : block_store_offset * store_rank; SelectKernelImpl( out + out_fix, mask + data_offset, in + in_fix, func, size, data_offset, store_rank); repeat++; } int num = numel - data_offset; if (num > 0) { // Cumsum index int idx_cumsum = repeat * GRID_NUM_X + BLOCK_ID_X; kps::details::ReadData(&block_store_offset, cumsum + idx_cumsum, 1); int out_fix = MaskData < 2 ? block_store_offset * store_rank : data_offset; int in_fix = MaskData < 2 ? data_offset : block_store_offset * store_rank; SelectKernelImpl( out + out_fix, mask + data_offset, in + in_fix, func, num, data_offset, store_rank); } } inline int64_t Floor(int64_t in, int64_t div) { return in / div * div; } // SelectData = 1 then masked_select; SelectData = 0 then where_index template void SelectKernel(const KPDevice &dev_ctx, const DenseTensor &condition, const DenseTensor &in_data, DenseTensor *out, Functor func) { const MT *cond_data = condition.data(); const int64_t numel = condition.numel(); auto dims = condition.dims(); int rank = SelectData ? 1 : dims.size(); const InT *in_data_ptr = SelectData ? in_data.data() : nullptr; // calculate the inclusive prefix sum of "true_num_array" // to get the index of "out" tensor, // and the total number of cond_data[i]==true. // Example: // condition: F T T F F F T T // before: 0 1 1 0 0 0 1 1 // after: 0 1 2 2 2 2 3 4 // out: 1 2 6 7 // alloc for cpu using CT = int64_t; // set Count_data Type const int t_size = sizeof(CT); const paddle::platform::CUDAPlace &cuda_place = dev_ctx.GetPlace(); paddle::platform::CPUPlace cpu_place = paddle::platform::CPUPlace(); // 1.1 get stored data num of per block const int kVecSize = 4; #ifdef PADDLE_WITH_XPU_KP int block = 64; auto stream = dev_ctx.x_context()->xpu_stream; const int num_per_block = kVecSize * block; const int need_grids = (numel + num_per_block - 1) / num_per_block; const int grid = std::min(need_grids, 8); #else const int block = 256; const int num_per_block = kVecSize * block; const int need_grids = (numel + num_per_block - 1) / num_per_block; const int grid = std::min(need_grids, 256); auto stream = dev_ctx.stream(); #endif const int64_t main_offset = Floor(numel, num_per_block); // 1.2 alloc tmp data for CoutBlock const int size_count_block = need_grids + 1; std::vector dims_vec = {size_count_block * 2}; IntArray dims_array(dims_vec); DenseTensor count_mem = phi::Empty(dev_ctx, dims_array); CT *count_data = count_mem.data(); // 1.3 launch CountKernl GetBlockCountKernel <<>>(cond_data, count_data, numel, main_offset); // 2.1 alloc cumsum data for CoutBlock prefix DenseTensor cumsum_mem = phi::Empty(dev_ctx, dims_array); CT *cumsum_data = cumsum_mem.data(); // 2.2 get prefix of count_data for real out_index CT total_true_num = static_cast(0); // init const int kCumVesize = 2; const int block_c = 256; const int main_offset_c = Floor(size_count_block, (kCumVesize * block_c)); using Add = kps::AddFunctor; CumsumOneBlock<<<1, block_c, 0, stream>>>( count_data, cumsum_data, size_count_block, main_offset_c, Add()); // 3.1 set temp ptr for in; // 3.1 alloc for out // 3.1.1 get true_num for gpu place the last cumsum is the true_num paddle::memory::Copy(cpu_place, &total_true_num, cuda_place, cumsum_data + need_grids, t_size, dev_ctx.stream()); dev_ctx.Wait(); // 3.1.2 allock for out with total_true_num std::vector out_dim = {static_cast(total_true_num)}; if (SelectData == 1) { out->Resize(phi::make_ddim(out_dim)); } else if (SelectData == 0) { // == 0 where_index out_dim.push_back(static_cast(rank)); out->Resize(phi::make_ddim(out_dim)); } auto out_data = dev_ctx.template Alloc(out); // 3.2 get true data's index according to cond_data and cumsum_data if (total_true_num <= 0) return; SelectKernel <<>>(out_data, cond_data, in_data_ptr, cumsum_data, func, numel, main_offset, rank); } } // namespace funcs } // namespace phi #endif