/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "paddle/phi/common/data_type.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { namespace funcs { using phi::To32BitIndex; template void SetConstant::operator()(const DeviceContext& context, phi::DenseTensor* tensor, T num) { auto t = phi::EigenVector::Flatten(*tensor); t.device(*context.eigen_device()) = t.constant(static_cast(num)); } #ifdef PADDLE_WITH_XPU template void SetConstant::operator()(const XPUContext& context, phi::DenseTensor* tensor, T num) { phi::VisitDataType(tensor->dtype(), TensorSetConstantXPU(tensor, num, context.GetPlace())); } template void SetConstant::operator()( const paddle::platform::XPUDeviceContext& context, phi::DenseTensor* tensor, T num) { phi::VisitDataType(tensor->dtype(), TensorSetConstantXPU(tensor, num, context.GetPlace())); } #endif template void Transpose::operator()( const DeviceContext& context, const phi::DenseTensor& in, phi::DenseTensor* out, const std::vector& axis) { Eigen::array permute; for (int i = 0; i < Rank; i++) { permute[i] = axis[i]; } auto eigen_in = phi::EigenTensor::From(in); auto eigen_out = phi::EigenTensor::From(*out); auto* dev = context.eigen_device(); // use 32bit index to speed up computation bool use_32bit_index = eigen_out.size() < Eigen::NumTraits::highest(); bool is_gpu_place = paddle::platform::is_gpu_place(context.GetPlace()); if (use_32bit_index && is_gpu_place) { To32BitIndex(eigen_out).device(*dev) = To32BitIndex(eigen_in).shuffle(permute); } else { eigen_out.device(*dev) = eigen_in.shuffle(permute); } } template void ColwiseSum::operator()(const DeviceContext& context, const phi::DenseTensor& input, phi::DenseTensor* out) { auto in_dims = input.dims(); auto size = input.numel() / in_dims[0]; PADDLE_ENFORCE_EQ(out->numel(), size, phi::errors::InvalidArgument( "The size of output tensor " "should be equal to the size of input tensor column" " dimension. Expected output size=%d, but received %d", size, out->numel())); auto in = phi::EigenMatrix::From(input); auto vec = phi::EigenVector::Flatten(*out); vec.device(*context.eigen_device()) = in.sum(Eigen::array({{0}})); } // Specialize for CPU, since Eigen implement a general reduce. However, // colwise-sum can be easily implemented. General reduce has a huge overhead in // CPU template class ColwiseSum { public: void operator()(const phi::CPUContext& context, const phi::DenseTensor& input, phi::DenseTensor* out) { auto& in_dims = input.dims(); auto height = in_dims[0]; auto size = in_dims[1]; PADDLE_ENFORCE_EQ( out->numel(), size, phi::errors::InvalidArgument( "The size of output tensor " "should be equal to the size of input tensor column" " dimension. Expected output size=%d, but received %d", size, out->numel())); T* out_buf = context.template Alloc(out); const T* in_buf = input.data(); for (size_t i = 0; i < static_cast(height); ++i) { for (size_t j = 0; j < static_cast(size); ++j) { if (i == 0) { out_buf[j] = in_buf[i * size + j]; } else { out_buf[j] += in_buf[i * size + j]; } } } } }; template void RowwiseMean::operator()(const DeviceContext& context, const phi::DenseTensor& input, phi::DenseTensor* out) { auto in_dims = input.dims(); PADDLE_ENFORCE_EQ(in_dims.size(), 2U, phi::errors::InvalidArgument("The rank of input tensor " "should be 2, but received %d", in_dims.size())); PADDLE_ENFORCE_EQ(out->numel(), in_dims[0], phi::errors::InvalidArgument( "The size of output tensor " "should be equal to the size of input tensor row" " dimension. Expected output size=%d, but received %d", in_dims[0], out->numel())); auto in = phi::EigenMatrix::From(input); auto vec = phi::EigenVector::Flatten(*out); vec.device(*context.eigen_device()) = in.mean(Eigen::array({{1}})); } // TODO(zcd): Following ColwiseSum format, need to confirm. // Specialize for CPU, since Eigen implement a general reduce. However, // rowwise-sum can be easily implemented. General reduce has a huge overhead in // CPU template class RowwiseMean { public: void operator()(const phi::CPUContext& context, const phi::DenseTensor& input, phi::DenseTensor* out) { auto& in_dims = input.dims(); PADDLE_ENFORCE_EQ( in_dims.size(), 2U, phi::errors::InvalidArgument("The rank of input tensor " "should be 2, but received %d", in_dims.size())); auto height = in_dims[0]; auto size = in_dims[1]; PADDLE_ENFORCE_EQ( out->numel(), height, phi::errors::InvalidArgument( "The size of output tensor " "should be equal to the size of input tensor row" " dimension. Expected output size=%d, but received %d", height, out->numel())); auto inv_size = 1.0 / size; T* out_buf = context.template Alloc(out); const T* in_buf = input.data(); for (size_t i = 0; i < static_cast(height); ++i) { T sum = 0; for (size_t j = 0; j < static_cast(size); ++j) { sum += in_buf[i * size + j]; } out_buf[i] = sum * inv_size; } } }; template void RowwiseSum::operator()(const DeviceContext& context, const phi::DenseTensor& input, phi::DenseTensor* out) { auto in_dims = input.dims(); PADDLE_ENFORCE_EQ(in_dims.size(), 2U, phi::errors::InvalidArgument("The rank of input tensor " "should be 2, but received %d", in_dims.size())); PADDLE_ENFORCE_EQ(out->numel(), in_dims[0], phi::errors::InvalidArgument( "The size of output tensor " "should be equal to the size of input tensor row" " dimension. Expected output size=%d, but received %d", in_dims[0], out->numel())); auto in = phi::EigenMatrix::From(input); auto vec = phi::EigenVector::Flatten(*out); vec.device(*context.eigen_device()) = in.sum(Eigen::array({{1}})); } // TODO(zcd): Following ColwiseSum format, need to confirm. // Specialize for CPU, since Eigen implement a general reduce. However, // rowwise-sum can be easily implemented. General reduce has a huge overhead in // CPU template class RowwiseSum { public: void operator()(const phi::CPUContext& context, const phi::DenseTensor& input, phi::DenseTensor* out) { auto& in_dims = input.dims(); PADDLE_ENFORCE_EQ( in_dims.size(), 2U, phi::errors::InvalidArgument("The rank of input tensor " "should be 2, but received %d", in_dims.size())); auto height = in_dims[0]; auto size = in_dims[1]; PADDLE_ENFORCE_EQ( out->numel(), height, phi::errors::InvalidArgument( "The size of output tensor " "should be equal to the size of input tensor row" " dimension. Expected output size=%d, but received %d", height, out->numel())); T* out_buf = context.template Alloc(out); const T* in_buf = input.data(); for (size_t i = 0; i < static_cast(height); ++i) { T sum = 0; for (size_t j = 0; j < static_cast(size); ++j) { sum += in_buf[i * size + j]; } out_buf[i] = sum; } } }; } // namespace funcs } // namespace phi