/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/kernels/funcs/blas/blas.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/elementwise_grad_base.h" namespace phi { // NOTE(dzhwinter): Only used in elementwise_add, elementwise_sub. // explicit gradient can cut off X, Y, Out from gradient op // In elementwise_add, elementwise_sub, we use dout as fake X, Y, Out to reuse // elementwise code. template void ElemwiseExplicitGradCompute(const CPUContext& dev_ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& out, const DenseTensor& dout, int axis, DenseTensor* dx, DenseTensor* dy, DX_OP dx_op, DY_OP dy_op) { const DDim& x_dim = x.dims(); const DDim& y_dim = y.dims(); if (x.dims() == y.dims()) { funcs::ElemwiseGradComputeNoBroadcast(dev_ctx, x_dim, y_dim, dout, dout, out, dout, axis, dx, dy, dx_op, dy_op); } else { funcs::ElemwiseGradComputeWithBroadcast(dev_ctx, x_dim, y_dim, dout, dout, out, dout, axis, dx, dy, dx_op, dy_op); } } /* ****************************** Add Grad ****************************** */ template struct IdentityGrad { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; } }; template typename std::enable_if::value>::type ElementwiseAddGrad(const CPUContext& ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& out, const DenseTensor& dout, DenseTensor* dx, DenseTensor* dy, int axis = -1) { auto blas = phi::funcs::GetBlas(ctx); if (dx) { blas.VCOPY(dout.numel(), dout.data(), ctx.template Alloc(dx)); } if (dy) { blas.VCOPY(dout.numel(), dout.data(), ctx.template Alloc(dy)); } } template typename std::enable_if::value>::type ElementwiseAddGrad(const CPUContext& ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& out, const DenseTensor& dout, DenseTensor* dx, DenseTensor* dy, int axis = -1) { ElemwiseExplicitGradCompute, IdentityGrad>( ctx, x, y, out, dout, axis, dx, dy, IdentityGrad(), IdentityGrad()); } /* ****************************** Sub Grad ****************************** */ template struct SubGradDX { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; } }; template struct SubGradDY { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return -dout; } }; template void ElementwiseSubGrad(const CPUContext& ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& out, const DenseTensor& dout, DenseTensor* dx, DenseTensor* dy, int axis = -1) { ElemwiseExplicitGradCompute, SubGradDY>( ctx, x, y, out, dout, axis, dx, dy, SubGradDX(), SubGradDY()); } } // namespace phi