// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/lite/kernels/x86/fc_compute.h" #include #include #include "paddle/fluid/lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { TEST(fc_x86, retrive_op) { auto fc = KernelRegistry::Global().Create("fc"); ASSERT_FALSE(fc.empty()); ASSERT_TRUE(fc.front()); } TEST(fc_x86, init) { FcCompute fc; ASSERT_EQ(fc.precision(), PRECISION(kFloat)); ASSERT_EQ(fc.target(), TARGET(kX86)); } TEST(fc_x86, run_test) { lite::Tensor x, w, b, out; constexpr int batch_size = 2; std::vector x_shape{batch_size, 3}; x.Resize(lite::DDim(x_shape)); std::vector w_shape{3, 4}; w.Resize(lite::DDim(w_shape)); std::vector b_shape{1, 4}; b.Resize(lite::DDim(b_shape)); std::vector out_shape{1, 4}; out.Resize(lite::DDim(out_shape)); auto x_data = x.mutable_data(); auto w_data = w.mutable_data(); auto b_data = b.mutable_data(); auto out_data = out.mutable_data(); for (int64_t i = 0; i < x.dims().production(); i++) { x_data[i] = static_cast(i); } for (int64_t i = 0; i < w.dims().production(); i++) { w_data[i] = static_cast(i); } for (int64_t i = 0; i < b.dims().production(); i++) { b_data[i] = static_cast(i); } /* lite::x86::math::fc_compute_eigen(x_data, batch_size, 3, // w_data, 3, 4, // b_data, ref_data); */ // FcCompute fc; FcCompute fc; operators::FcParam param; param.in_num_col_dims = 1; param.input = &x; param.w = &w; param.bias = &b; param.output = &out; param.in_mat_dims = x.dims(); // std::unique_ptr ctx(new KernelContext); // ctx->As(); fc.SetParam(param); // fc.SetContext(std::move(ctx)); fc.Run(); VLOG(3) << "output vs ref"; for (int i = 0; i < out.dims().production(); i++) { VLOG(3) << out_data[i]; } /* for (int i = 0; i < out.dims().product(); ++i) { EXPECT_NEAR(out_data[i], ref_data[i], 1e-5); }*/ } } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle USE_LITE_KERNEL(fc, kX86, kFloat, kNCHW, def);