# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle.fluid.framework as framework import paddle.fluid.optimizer as optimizer import paddle.compat as cpt from paddle.fluid.backward import append_backward from paddle.fluid.transpiler.details import program_to_code class TestDGCMomentumOptimizer(unittest.TestCase): class MockDGCMomentum(optimizer.DGCMomentumOptimizer): def get_accumulators(self): return self._accumulators def get_velocity_str(self): return self._velocity_acc_str def check_dgc_momentum_optimizer(self, dims=[5, 10, 8], name="momentum"): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[dims[0], dims[1]], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) mul_y = block.create_var( dtype="float32", shape=[dims[1], dims[2]], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[dims[0], dims[2]], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) learning_rate = 0.01 dgc_momentum_optimizer = self.MockDGCMomentum( learning_rate=learning_rate, momentum=0.2, rampup_begin_step=0) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) # params_grads = append_backward(mean_out) params_grads = dgc_momentum_optimizer.backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(dgc_momentum_optimizer.get_accumulators()), 0) with framework.program_guard(program, init_program): opts = dgc_momentum_optimizer.apply_gradients(params_grads) self.assertEqual(len(opts), 2) sgd_op = opts[-1] self.assertEqual([op.type for op in opts], ["scale", name]) self.assertFalse(sgd_op.attr('use_nesterov')) # Check accumulators accumulators = dgc_momentum_optimizer.get_accumulators() self.assertEqual(len(accumulators), 1) self.assertTrue( dgc_momentum_optimizer.get_velocity_str() in accumulators) velocity_acc = accumulators[dgc_momentum_optimizer.get_velocity_str()] self.assertEqual(len(velocity_acc), 1) self.assertTrue(mul_x.name in velocity_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 2) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate) self.assertEqual(init_ops[1].type, "fill_constant") self.assertAlmostEqual(init_ops[1].attr('value'), 0.0) with open("test_dgc_optimizer_" + name + ".log", "w") as f: program_to_code(program, fout=f) def test_momentum_without_dgc(self): self.check_dgc_momentum_optimizer() def test_momentum_with_dgc(self): # 16 * 1024 = 16384, use dgc momentum self.check_dgc_momentum_optimizer( dims=[16, 1024, 8], name="dgc_momentum") if __name__ == '__main__': unittest.main()