# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import copy import paddle from paddle.fluid.framework import Variable from .dist_attribute import OperatorDistributedAttribute from .dist_attribute import append_op_input_suffix from .dist_attribute import append_op_output_suffix from .utils import ( convert_to_shard_spec, verify_shard_spec, __no_shape_var_type__, ) class DistributedOperator: def __init__(self, serial_op, dist_attr=None): self._serial_op = serial_op self._serial_inputs = {} self._serial_outputs = {} self._dist_attr = None # Reuse the dist_attr setter to initialize _dist_attr self.dist_attr = dist_attr @property def serial_op(self): return self._serial_op @property def dist_attr(self): return self._dist_attr @dist_attr.setter def dist_attr(self, dist_attr): if self._dist_attr is None: self._dist_attr = OperatorDistributedAttribute() # Create new dist_attr related to current serial_op dist_attr = self._filter_dist_attr(dist_attr) # Append suffix to mark the inputs or outputs if isinstance(dist_attr, dict): # Copy the keys since we may add new ones for key in list(dist_attr.keys()): if isinstance(key, Variable): if key.name in self._serial_op.input_arg_names: dist_attr[append_op_input_suffix(key.name)] = True if key.name in self._serial_op.output_arg_names: dist_attr[append_op_output_suffix(key.name)] = True self._dist_attr.init(dist_attr) self._init_default_dist_attr() def get_serial_input(self, name): return self._serial_inputs.get(name, None) def get_serial_output(self, name): return self._serial_outputs.get(name, None) def _init_default_dist_attr(self): for tensor_name in self._serial_op.input_arg_names: if self._serial_op.type == "create_py_reader": tensor = None else: tensor = self._serial_op.block._var_recursive(tensor_name) self._serial_inputs[tensor_name] = tensor if tensor is None: tensor_shape = [] else: if tensor.type in __no_shape_var_type__: tensor_shape = [] else: tensor_shape = tensor.shape if self._dist_attr.get_input_dims_mapping(tensor_name) is None: tensor_dims_mapping = [-1 for _ in range(len(tensor_shape))] self._dist_attr.set_input_dims_mapping( tensor_name, tensor_dims_mapping ) for tensor_name in self._serial_op.output_arg_names: tensor = self._serial_op.block._var_recursive(tensor_name) if tensor.type in __no_shape_var_type__: tensor_shape = [] else: tensor_shape = tensor.shape self._serial_outputs[tensor_name] = tensor if self._dist_attr.get_output_dims_mapping(tensor_name) is None: tensor_dims_mapping = [-1 for _ in range(len(tensor_shape))] self._dist_attr.set_output_dims_mapping( tensor_name, tensor_dims_mapping ) if self._dist_attr.op_type is None: self._dist_attr.op_type = self.serial_op.type if self._dist_attr.impl_type is None: self._dist_attr.impl_type = "default" if self._dist_attr.impl_idx is None: self._dist_attr.impl_idx = 0 if self._dist_attr.is_recompute is None: self._dist_attr.is_recompute = False def _filter_dist_attr(self, dist_attr): if dist_attr is None: return None new_dist_attr = None if isinstance(dist_attr, dict): new_dist_attr = {} for key, value in dist_attr.items(): if isinstance(key, Variable): if ( key.name in self._serial_op.input_arg_names or key.name in self._serial_op.output_arg_names ): new_dist_attr[key] = value else: new_dist_attr[key] = value elif isinstance(dist_attr, OperatorDistributedAttribute): new_dist_attr = copy.deepcopy(dist_attr) new_dist_attr._inputs_dist_attrs.clear() new_dist_attr._outputs_dist_attrs.clear() for tensor_name in self._serial_op.input_arg_names: tensor_dist_attr = dist_attr.get_input_dist_attr(tensor_name) if tensor_dist_attr: new_dist_attr.set_input_dist_attr( tensor_name, tensor_dist_attr ) for tensor_name in self._serial_op.output_arg_names: tensor_dist_attr = dist_attr.get_output_dist_attr(tensor_name) if tensor_dist_attr: new_dist_attr.set_output_dist_attr( tensor_name, tensor_dist_attr ) else: assert False, "Cannot recognize the {} parameter.".format(dist_attr) return new_dist_attr def validate_dist_attr(self): if "read" in self.serial_op.type or "while" == self.serial_op.type: return True for name in self.serial_op.input_arg_names: input_dist_attr = self.dist_attr.get_input_dist_attr(name) dims_mapping = input_dist_attr.dims_mapping if self.get_serial_input(name).type in __no_shape_var_type__: shape = [] else: shape = self.get_serial_input(name).shape if len(shape) != len(dims_mapping): return False for i in range(len(dims_mapping)): if dims_mapping[i] < -1 or dims_mapping[i] >= len( self.dist_attr.process_mesh.topology ): return False for i in range(len(self.dist_attr.process_mesh.topology)): if dims_mapping.count(i) > 1: return False if self.dist_attr.process_mesh != input_dist_attr.process_mesh: return False for name in self.serial_op.output_arg_names: output_dist_attr = self.dist_attr.get_output_dist_attr(name) dims_mapping = output_dist_attr.dims_mapping if self.get_serial_output(name).type in __no_shape_var_type__: shape = [] else: shape = self.get_serial_output(name).shape if len(shape) != len(dims_mapping): return False for i in range(len(dims_mapping)): if dims_mapping[i] < -1 or dims_mapping[i] >= len( self.dist_attr.process_mesh.topology ): return False for i in range(len(self.dist_attr.process_mesh.topology)): if dims_mapping.count(i) > 1: return False if self.dist_attr.process_mesh != output_dist_attr.process_mesh: return False return True def __str__(self): str = "{{op type: {}, op id: {}".format( self.serial_op.desc.type(), self.serial_op.desc.id() ) # str += ", {}".format(self.dist_attr) # return str if self.dist_attr.is_annotated("process_mesh"): annotated_str = "annotated" else: annotated_str = "non-annotated" str += ", process_mesh ({}): {}".format( annotated_str, self.dist_attr.process_mesh ) for arg_name in self.serial_op.desc.input_arg_names(): dims_mapping = self.dist_attr.get_input_dims_mapping(arg_name) if self.dist_attr.is_annotated_input_dims_mapping(arg_name): annotated_str = "annotated" else: annotated_str = "non-annotated" if self.get_serial_input(arg_name) is not None: if self.get_serial_input(arg_name).is_parameter: is_parameter_str = "parameter" else: is_parameter_str = "non-parameter" else: is_parameter_str = "non-parameter" str += ", {}'s dims_mapping (input, {}, {}): {}".format( arg_name, annotated_str, is_parameter_str, dims_mapping ) for arg_name in self.serial_op.desc.output_arg_names(): dims_mapping = self.dist_attr.get_output_dims_mapping(arg_name) if self.dist_attr.is_annotated_output_dims_mapping(arg_name): annotated_str = "annotated" else: annotated_str = "non-annotated" if self.get_serial_output(arg_name) is not None: if self.get_serial_output(arg_name).is_parameter: is_parameter_str = "parameter" else: is_parameter_str = "non-parameter" else: is_parameter_str = "non-parameter" str += ", {}'s dims_mapping (output, {}, {}): {}".format( arg_name, annotated_str, is_parameter_str, dims_mapping ) str += ", pipeline stage: {}".format(None) str += ", dist_impl idx: {} , dist_impl type {} }}".format( self.dist_attr._impl_idx, self.dist_attr._impl_type ) return str def __deepcopy__(self, memo): cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result for k, v in self.__dict__.items(): if ( k == "_serial_op" or k == "_serial_inputs" or k == "_serial_outputs" ): setattr(result, k, v) else: setattr(result, k, copy.deepcopy(v, memo)) return result class DistributedOperatorHelper: def __init__( self, serial_op, process_mesh, in_dims_mappings, out_dims_mappings ): self._serial_op = serial_op self._process_mesh = process_mesh self._in_dims_mappings = in_dims_mappings self._out_dims_mappings = out_dims_mappings def __call__(self, *args, **kwargs): tensor_to_dims_mapping = {} index = 0 if self._in_dims_mappings: assert len(args) + len(kwargs) == len( self._in_dims_mappings ), "The length of dims_mapping {} does not matching the length output {}.".format( len(self._in_dims_mappings), len(args) + len(kwargs) ) for arg in args: if isinstance(arg, Variable) and self._in_dims_mappings: tensor_to_dims_mapping[arg.name] = self._in_dims_mappings[index] index += 1 for arg in kwargs.values() and self._in_dims_mappings: if isinstance(arg, Variable): tensor_to_dims_mapping[arg.name] = self._in_dims_mappings[index] index += 1 default_prog = paddle.fluid.default_main_program() cur_block = default_prog.current_block() op_size = len(cur_block.ops) output = self._serial_op(*args, **kwargs) new_op_size = len(cur_block.ops) if isinstance(output, tuple) or isinstance(output, list): new_output = list(output) elif isinstance(output, Variable): new_output = [output] else: raise ValueError("Unrecognized outpout.") if self._out_dims_mappings: assert len(new_output) == len( self._out_dims_mappings ), "The length of dims_mapping {} does not matching the length output {}.".format( len(self._out_dims_mappings), len(new_output) ) for i, item in enumerate(new_output): if isinstance(item, Variable) and self._out_dims_mappings: tensor_to_dims_mapping[item.name] = self._out_dims_mappings[i] from .dist_context import get_default_distributed_context default_dist_ctx = get_default_distributed_context() for idx in range(op_size, new_op_size): op = cur_block.ops[idx] dist_op = DistributedOperator(op) for name in dist_op.serial_op.input_arg_names: if name in tensor_to_dims_mapping.keys(): tensor = dist_op.get_serial_input(name) tensor_dist_attr = dist_op.dist_attr.get_input_dist_attr( name ) dims_mapping = tensor_to_dims_mapping[name] if tensor is None: tensor_shape = [] else: if tensor.type in __no_shape_var_type__: tensor_shape = [] else: tensor_shape = tensor.shape if dims_mapping is not None: dims_mapping = tensor_to_dims_mapping[name] shard_spec = convert_to_shard_spec( dims_mapping, self._process_mesh ) assert verify_shard_spec( shard_spec, tensor_shape, self._process_mesh ), "For tensor {}, shard_spec {} is invalid with tensor_shape {} and process_mesh {}.".format( name, shard_spec, tensor_shape, self._process_mesh ) tensor_dist_attr.dims_mapping = dims_mapping tensor_dist_attr.mark_annotated("dims_mapping") for name in dist_op.serial_op.output_arg_names: if name in tensor_to_dims_mapping.keys(): tensor = dist_op.get_serial_output(name) tensor_dist_attr = dist_op.dist_attr.get_output_dist_attr( name ) dims_mapping = tensor_to_dims_mapping[name] if tensor is None: tensor_shape = [] else: if tensor.type in __no_shape_var_type__: tensor_shape = [] else: tensor_shape = tensor.shape if dims_mapping is not None: dims_mapping = tensor_to_dims_mapping[name] shard_spec = convert_to_shard_spec( dims_mapping, self._process_mesh ) assert verify_shard_spec( shard_spec, tensor_shape, self._process_mesh ), "For tensor {}, shard_spec {} is invalid with tensor_shape {} and process_mesh {}.".format( name, shard_spec, tensor_shape, self._process_mesh ) tensor_dist_attr.dims_mapping = dims_mapping tensor_dist_attr.mark_annotated("dims_mapping") dist_op.dist_attr.process_mesh = self._process_mesh if self._process_mesh is not None: dist_op.dist_attr.mark_annotated("process_mesh") default_dist_ctx.add_dist_op_for_program(dist_op) return output