# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import paddle.fluid as fluid from paddle.fluid import core from paddle.fluid.framework import Program from paddle.fluid.compiler import CompiledProgram from paddle.fluid.executor import Executor from paddle.fluid.parallel_executor import ParallelExecutor from paddle.fluid.framework import Variable, Parameter from .runtime_base import RuntimeBase from ..base.private_helper_function import wait_server_ready class ParameterServerRuntime(RuntimeBase): def __init__(self): super(ParameterServerRuntime, self).__init__() self._communicator = None def _set_basic_info(self, context): self.context = context self.role_maker = context["role_maker"] self.origin_main_program = context["origin_main_program"] self.origin_startup_program = context["origin_startup_program"] self.async_strategy = self._get_distributed_strategy() self.compiled_strategy = self.build_compiled_startegy() def _get_distributed_strategy(self): strategy = None from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory dist_strategy = self.context["valid_strategy"] k_steps = dist_strategy.a_sync_configs["k_steps"] if not dist_strategy.a_sync and k_steps == 0: strategy = StrategyFactory.create_sync_strategy() if dist_strategy.a_sync and k_steps == 0: strategy = StrategyFactory.create_async_strategy() if dist_strategy.a_sync and k_steps > 0: strategy = StrategyFactory.create_geo_strategy(k_steps) if not strategy: raise ValueError("k_steps must be invalid value, please check") return strategy def build_compiled_startegy(self): from paddle.fluid.incubate.fleet.parameter_server.ir.public import CompileTimeStrategy compiled_config = CompileTimeStrategy( self.origin_main_program, self.origin_main_program, self.async_strategy, self.role_maker) return compiled_config def _load_sparse_params(self, executor, dirname, varnames, main_program=None): assert vars != None check_vars = [] load_prog = Program() load_block = load_prog.global_block() def _in_varnames(var): return var.name in varnames load_vars = list( filter(_in_varnames, fluid.default_main_program().list_vars())) if main_program is None: main_program = self.origin_main_program from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts for each_var in load_vars: assert isinstance(each_var, Variable) origin_varname, _, _ = _get_varname_parts(each_var.name) new_var = fluid.io._clone_var_in_block_(load_block, each_var) var_path = os.path.join(dirname, origin_varname) if not os.path.exists(var_path): raise ValueError("SelectedRows var {} can not find at {}". format(new_var.name, var_path)) if os.path.isfile(var_path): load_block.append_op( type='sparse_tensor_load', inputs={}, outputs={'Out': [new_var]}, attrs={ 'file_path': os.path.join(dirname, origin_varname), 'node_index': self.role_maker._server_index(), 'node_num': self.role_maker._server_num(), 'shape': each_var.shape }) check_vars.append(each_var) executor.run(load_prog) def _load_distributed_params(self, dirname, varnames): from paddle.fluid.communicator import LargeScaleKV from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts scale_kv = LargeScaleKV() for varname in varnames: origin_varname, _, _ = _get_varname_parts(varname) sparse_dir = os.path.join(dirname, origin_varname, varname) scale_kv.load(varname, sparse_dir) @staticmethod def __exclude_vars(exclude_var_names=[]): def is_valid(var): if var.name in exclude_var_names: return False from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts origin_varname, _, _ = _get_varname_parts(var.name) if origin_varname.endswith("@GRAD"): return False if origin_varname == "learning_rate_0": return False if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \ var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \ var.desc.type() == core.VarDesc.VarType.READER: return False return var.persistable return is_valid def _init_worker(self): def sync_strategy_envs(): kwargs = {} kwargs[ "pserver_endpoints"] = self.role_maker._get_pserver_endpoints() kwargs["trainer_id"] = self.role_maker._worker_index() return kwargs def geo_strategy_envs(): from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames def get_sparse_attrs(): opt_init_map = {} opt_init_map["gaussian_random"] = ["seed", "mean", "std"] opt_init_map["fill_constant"] = ["value"] opt_init_map["uniform_random"] = ["seed", "min", "max"] opt_init_map[ "truncated_gaussian_random"] = ["seed", "mean", "std"] dist_varnames = get_sparse_tablenames(self.origin_main_program, True) sparse_varnames = get_sparse_tablenames( self.origin_main_program, False) if len(dist_varnames) != 0: raise ValueError( "GeoStrategy can not support large scale embeding now, please use fluid.layers.embedding" ) init_attrs = [] for value_name in sparse_varnames: value_var = self.origin_main_program.global_block().vars[ value_name] value_attr = [ value_name, ",".join([str(dim) for dim in value_var.shape]) ] for op in self.origin_startup_program.global_block().ops: if op.type in opt_init_map.keys( ) and value_name == op.output("Out")[0]: init_attr = [op.type] for attr in opt_init_map[op.type]: init_attr.append(str(op.attr(attr))) value_attr.append("&".join(init_attr)) init_attrs.append(":".join(value_attr)) break return "#".join(init_attrs) kwargs = {} kwargs["trainers"] = self.role_maker._worker_num() kwargs["sparse_attrs"] = get_sparse_attrs() return kwargs from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_lr_ops, _has_global_step from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \ SyncStrategy, GeoStrategy trainer_config = self.async_strategy.get_trainer_runtime_config() dist_strategy = self.context["valid_strategy"] launch_barrier = dist_strategy.a_sync_configs["launch_barrier"] if launch_barrier: # for trainer wait server ready wait_server_ready(self.role_maker._get_pserver_endpoints()) # for ps-heter mode, wait heter worker ready if self.role_maker._is_heter_parameter_server_mode and self.role_maker._is_worker( ): wait_server_ready(self.role_maker._get_heter_worker_endpoints()) lrs = _has_global_step(_get_lr_ops(self.origin_main_program)) if lrs: kwargs = {"need_global_step": "1"} else: kwargs = {"need_global_step": "0"} if isinstance(self.async_strategy, GeoStrategy): geo_kwargs = geo_strategy_envs() kwargs.update(geo_kwargs) if isinstance(self.async_strategy, SyncStrategy): sync_kwargs = sync_strategy_envs() kwargs.update(sync_kwargs) kwargs = kwargs if kwargs else None send_ctx = self.compiled_strategy.get_communicator_send_context() if self.compiled_strategy.is_geo_mode(): recv_ctx = self.compiled_strategy.get_communicator_recv_context( recv_type=4) else: recv_ctx = self.compiled_strategy.get_communicator_recv_context( recv_type=1) from paddle.fluid.communicator import Communicator self._communicator = Communicator( trainer_config.mode, kwargs, trainer_config.get_communicator_flags()) self._communicator.init_with_ctx(send_ctx, recv_ctx) if not self._communicator.is_running(): self._communicator.start() else: warnings.warn("communicator has been initialized, skip") def _get_executor(self): executor = fluid.Executor(fluid.CPUPlace()) if self.role_maker._is_heter_parameter_server_mode: heter_worker_device_guard = self.context[ "valid_strategy"].a_sync_configs[ "heter_worker_device_guard"].upper() if heter_worker_device_guard not in ["GPU", "XPU", "CPU"]: raise ValueError("Heter Worker Not Support Device {}".format( heter_worker_device_guard)) if self.role_maker._is_heter_worker(): if heter_worker_device_guard == "GPU": executor = Executor( fluid.CUDAPlace( int(os.getenv("FLAGS_selected_gpus", "0")))) elif heter_worker_device_guard == "XPU": executor = Executor( fluid.XPUPlace( int(os.getenv("FLAGS_selected_xpus", "0")))) return executor def _init_server(self, *args, **kwargs): if len(args) > 1: raise ValueError("init server can only accept 1 args: `dirname`") elif len(args) == 1: model_dirname = args[0] else: model_dirname = None executor = self._get_executor() if self.role_maker._is_heter_worker() and self.context[ "valid_strategy"].a_sync_configs["launch_barrier"]: # for heter trainer wait server ready wait_server_ready(self.role_maker._get_pserver_endpoints()) executor.run(fluid.default_startup_program()) if self.role_maker._is_heter_worker(): self._init_worker() return sparse_varnames = self.compiled_strategy.get_sparse_varname_on_ps(False) sparse_related_optimize_varnames = [] for var_name in sparse_varnames: sparse_related_optimize_varnames += self.compiled_strategy.get_optimize_varname_on_ps( var_name) sparse_related_optimize_varnames = list( set(sparse_related_optimize_varnames)) distribtued_varnames = self.compiled_strategy.get_sparse_varname_on_ps( True) distributed_related_optimize_varnames = [] for var_name in distribtued_varnames: distributed_related_optimize_varnames += self.compiled_strategy.get_optimize_varname_on_ps( var_name) distributed_related_optimize_varnames = list( set(distributed_related_optimize_varnames)) remaining_vars = list( filter( ParameterServerRuntime.__exclude_vars( sparse_varnames + distribtued_varnames + sparse_related_optimize_varnames + distributed_related_optimize_varnames), fluid.default_main_program().list_vars())) if not model_dirname: return if not os.path.isdir(model_dirname): raise ValueError("There is no directory named '%s'", model_dirname) # load dense fluid.io.load_vars( executor, main_program=fluid.default_main_program(), dirname=model_dirname, vars=remaining_vars) # load sparse self._load_sparse_params( executor=executor, dirname=model_dirname, varnames=sparse_varnames + sparse_related_optimize_varnames) # load large scale self._load_distributed_params( dirname=model_dirname, varnames=distribtued_varnames + distributed_related_optimize_varnames) def _run_server(self): executor = self._get_executor() executor.run(fluid.default_main_program()) def _stop_worker(self): self._communicator.stop() executor = self._get_executor() executor.close() def _get_optimizer_status(self, op, param_name): supported_opts = [ "sgd", "adam", "adagrad", "adamax", "momentum", "lars_momentum", "rmsprop", "decayed_adagrad", "ftrl" ] reshaped_val_map = {} reshaped_val_map["sgd"] = [] reshaped_val_map["adam"] = ["moment1_0", "moment2_0"] reshaped_val_map["adagrad"] = ["moment_0"] reshaped_val_map["adamax"] = ["moment_0", "inf_norm_0"] reshaped_val_map["momentum"] = ["velocity_0"] reshaped_val_map["lars_momentum"] = ["velocity_0"] reshaped_val_map[ "rmsprop"] = ["momentum_0", "mean_square_0", "mean_grad_0"] reshaped_val_map["decayed_adagrad"] = ["moment_0"] reshaped_val_map["ftrl"] = ["squared_0", "linear_0"] orishaped_val_map = {} orishaped_val_map["adam"] = ["beta1_pow_acc_0", "beta2_pow_acc_0"] orishaped_val_map["adamax"] = ["beta1_pow_acc_0"] if op not in supported_opts: raise ValueError( "fleet can not support optimizer: {}, only this can be supported: {}". format(op, supported_opts)) reshaped_names = [ param_name + "_" + val for val in reshaped_val_map[op] ] if op not in orishaped_val_map: origin_names = [] else: origin_names = [ param_name + "_" + val for val in orishaped_val_map[op] ] return reshaped_names, origin_names def _get_optimizer_op(self, param_name): from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_optimize_ops opts = _get_optimize_ops(self.origin_main_program) for op in opts: if "Param" in op.input_names and \ "LearningRate" in op.input_names and op.input("Param")[0] == param_name: return op def _save_dense_params(self, executor, dirname, context, main_program): self._communicator.recv() prog = Program() block = prog.global_block() local_vars = [] for name, var_ctx in context.items(): if len(var_ctx.origin_varnames()) != 1: raise ValueError("Dense can not support split now.") varname = var_ctx.origin_varnames()[0] local_vars.append(varname) optimizer = self._get_optimizer_op(varname) reshaped_varnames, origin_varnames = self._get_optimizer_status( optimizer.type, varname) for var_name in [varname] + reshaped_varnames + origin_varnames: var = self.origin_main_program.global_block().vars[var_name] block.append_op( type='recv_save', attrs={ "trainer_id": self.role_maker._worker_index(), "shape": var.shape, "slice_shapes": [",".join([str(i) for i in var.shape])], "slice_varnames": [var.name], "remote_varnames": [var.name], "is_sparse": False, "endpoints": var_ctx.split_endpoints(), "file_path": os.path.join(dirname, var.name) }) executor.run(prog) return local_vars def _save_sparse_params(self, executor, dirname, context, main_program): prog = Program() block = prog.global_block() local_vars = [] for name, var_ctx in context.items(): if len(var_ctx.origin_varnames()) != 1: raise ValueError("Dense can not support split now.") varname = var_ctx.origin_varnames()[0] local_vars.append(varname) optimizer = self._get_optimizer_op(varname) reshaped_varnames, origin_varnames = self._get_optimizer_status( optimizer.type, varname) var = self.origin_main_program.global_block().vars[varname] slice_shapes = [] dims1 = ",".join([str(i) for i in var.shape[1:]]) for section in var_ctx.sections(): slice_shapes.append(str(section) + dims1) block.append_op( type='recv_save', attrs={ "trainer_id": self.role_maker._worker_index(), "shape": var.shape, "slice_shapes": slice_shapes, "slice_varnames": var_ctx.split_varnames(), "remote_varnames": var_ctx.split_varnames(), "is_sparse": True, "endpoints": var_ctx.split_endpoints(), "pserver_num": len(self.role_maker._get_pserver_endpoints()), "file_path": os.path.join(dirname, var.name) }) for reshaped_varname in reshaped_varnames: var = self.origin_main_program.global_block().vars[ reshaped_varname] slice_varnames = [] remote_varnames = [] for i in range(len(var_ctx.split_varnames())): slice_varnames.append("{}.block{}".format(reshaped_varname, i)) remote_varnames.append(reshaped_varname) block.append_op( type='recv_save', attrs={ "trainer_id": self.role_maker._worker_index(), "shape": var.shape, "slice_shapes": slice_shapes, "slice_varnames": slice_varnames, "remote_varnames": remote_varnames, "is_sparse": True, "endpoints": var_ctx.split_endpoints(), "pserver_num": len(self.role_maker._get_pserver_endpoints()), "file_path": os.path.join(dirname, var.name) }) for origin_varname in origin_varnames: var = self.origin_main_program.global_block().vars[ origin_varname] block.append_op( type='recv_save', attrs={ "trainer_id": self.role_maker._worker_index(), "shape": var.shape, "slice_shapes": [",".join([str(i) for i in var.shape])], "slice_varnames": [origin_varname], "remote_varnames": [origin_varname], "is_sparse": False, "endpoints": var_ctx.split_endpoints()[:1], "file_path": os.path.join(dirname, var.name) }) executor.run(prog) return context.keys() def _save_distributed_params(self, executor, dirname, context, main_program): prog = Program() block = prog.global_block() for name, var_ctx in context.items(): block.append_op( type='checkpoint_notify', attrs={ "varname": name, "is_slice": True, "slice_varnames": var_ctx.split_varnames(), "remote_varnames": var_ctx.split_varnames(), "endpoints": var_ctx.split_endpoints(), "dirname": dirname }) executor.run(prog) return context.keys() def _save_distributed_persistables(self, executor, dirname, main_program): dense_ctx = self.compiled_strategy.get_communicator_recv_context( recv_type=1, use_origin_program=True) sparse_ctx = self.compiled_strategy.get_communicator_recv_context( recv_type=2, use_origin_program=True) distributed_ctx = self.compiled_strategy.get_communicator_recv_context( recv_type=3, use_origin_program=True) recv_dense_varnames = self._save_dense_params(executor, dirname, dense_ctx, main_program) recv_sparse_varnames = self._save_sparse_params( executor, dirname, sparse_ctx, main_program) recv_distributed_varnames = self._save_distributed_params( executor, dirname, distributed_ctx, main_program) saved_varnames = recv_dense_varnames + list( recv_sparse_varnames) + list(recv_distributed_varnames) remaining_vars = list( filter( ParameterServerRuntime.__exclude_vars(saved_varnames), main_program.list_vars())) fluid.io.save_vars( executor, main_program=main_program, dirname=dirname, vars=remaining_vars) def _ps_inference_save_persistables(self, executor, dirname, main_program=None, **kwargs): """ This function filters out all variables with `persistable==True` from the give `main_program` and then saves these variables to the folder `dirname` or file `filename`. The `dirname` is used to specify the folder where persistable variables are going to be saved. If you would like to save variables in separate files, set `filename` None; if you would like to save all variables in a single file, use `filename` to specify the file name. """ if isinstance(executor, ParallelExecutor): raise TypeError( "in fleet.save_persistables() function, executor must be as Executor type, ParallelExecutor is not allowed" ) if not isinstance(executor, Executor): raise TypeError( "in fleet.save_persistables() function, executor must be as Executor type" ) if main_program is None: main_program = self.compiled_strategy.get_origin_ps_main_program() if isinstance(main_program, CompiledProgram): raise TypeError( "in fleet.save_persistables() function, main_program must be as Program type, CompiledProgram is not allowed" ) self._save_distributed_persistables(executor, dirname, main_program) def _ps_inference_save_inference_model(self, executor, dirname, feeded_var_names, target_vars, main_program=None, export_for_deployment=True): """ Prune the given `main_program` to build a new program especially for inference, and then save it and all related parameters to given `dirname` by the `executor`. """ if isinstance(executor, ParallelExecutor): raise TypeError( "in fleet.save_inference_model() function, executor must be as Executor type, ParallelExecutor is not allowed" ) if not isinstance(executor, Executor): raise TypeError( "in fleet.save_inference_model() function, executor must be as Executor type" ) if main_program is not None: if isinstance(main_program, CompiledProgram): raise TypeError( "in fleet.save_inference_model() function, main_program must be as Program type, CompiledProgram is not allowed" ) fluid.io.save_inference_model(dirname, feeded_var_names, target_vars, executor, main_program, None, None, export_for_deployment) else: fluid.io.save_inference_model(dirname, feeded_var_names, target_vars, executor, self.origin_main_program, None, None, export_for_deployment, True) model_basename = "__model__" model_filename = os.path.join(dirname, model_basename) with open(model_filename, "rb") as f: program_desc_str = f.read() program = Program.parse_from_string(program_desc_str) program._copy_dist_param_info_from(fluid.default_main_program()) self._ps_inference_save_persistables(executor, dirname, program) def _save_inference_model(self, *args, **kwargs): self._ps_inference_save_inference_model(*args, **kwargs) def _save_persistables(self, *args, **kwargs): self._ps_inference_save_persistables(*args, **kwargs)