/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/conv_transpose_grad_kernel.h" #include #include "paddle/phi/backends/dynload/cudnn.h" #include "paddle/phi/common/float16.h" #include "paddle/phi/core/ddim.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/cpu/conv_util.h" #include "paddle/phi/kernels/funcs/batch_norm_utils.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/funcs/padding.h" #include "paddle/phi/kernels/funcs/slice.h" #include "paddle/phi/kernels/transpose_kernel.h" #ifdef PADDLE_WITH_HIP #include "paddle/fluid/platform/device/gpu/rocm/miopen_helper.h" #include "paddle/phi/kernels/gpudnn/conv_miopen_helper.h" #else #include "paddle/fluid/platform/device/gpu/cuda/cudnn_helper.h" #include "paddle/phi/kernels/gpudnn/conv_cudnn_v7.h" #endif namespace phi { using GPUDNNDataLayout = paddle::platform::DataLayout; template void ConvTransposeGradRawGPUDNNKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& filter, const DenseTensor& dout, const std::vector& strides, const std::vector& paddings, const std::string& padding_algorithm, int groups, const std::vector& dilations, const std::string& data_format, DenseTensor* dx, DenseTensor* dfilter) { const T* filter_data = filter.data(); std::vector paddings_ = paddings; std::vector dilations_ = dilations; // cudnn v5 does not support dilations const GPUDNNDataLayout data_layout = (data_format != "NHWC" ? GPUDNNDataLayout::kNCHW : GPUDNNDataLayout::kNHWC); // if channel_last, transpose to channel_first DenseTensor x_transpose; DenseTensor dout_transpose; std::vector x_vec = vectorize(x.dims()); std::vector out_vec = vectorize(dout.dims()); if (data_layout == GPUDNNDataLayout::kNHWC) { if (strides.size() == 2U) { std::vector axis = {0, 3, 1, 2}; for (size_t i = 0; i < axis.size(); ++i) { x_vec[i] = x.dims()[axis[i]]; out_vec[i] = dout.dims()[axis[i]]; } x_transpose = Transpose(ctx, x, axis); dout_transpose = Transpose(ctx, dout, axis); } else if (strides.size() == 3U) { std::vector axis = {0, 4, 1, 2, 3}; for (size_t i = 0; i < axis.size(); ++i) { x_vec[i] = x.dims()[axis[i]]; out_vec[i] = dout.dims()[axis[i]]; } x_transpose = Transpose(ctx, x, axis); dout_transpose = Transpose(ctx, dout, axis); } } else { x_transpose = x; dout_transpose = dout; } // update padding and dilation auto x_dims = x_transpose.dims(); auto filter_dims = filter.dims(); DDim x_data_dims; x_data_dims = slice_ddim(x_dims, 2, x_dims.size()); DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size()); std::vector ksize = vectorize(filter_data_dims); UpdatePaddingAndDilation( &paddings_, &dilations_, padding_algorithm, x_data_dims, strides, ksize); int data_dim = strides.size(); // 2d or 3d bool is_sys_pad = funcs::IsSymmetricPadding(paddings_, data_dim); std::vector x_pad(x_dims.size() * 2, 0); DenseTensor transformed_dout; std::vector padding_common(data_dim, 0); if (!is_sys_pad) { std::vector padding_diff(data_dim); std::vector new_dout_shape_vec(data_dim + 2); new_dout_shape_vec[0] = dout_transpose.dims()[0]; new_dout_shape_vec[1] = dout_transpose.dims()[1]; for (size_t i = 0; i < data_dim; ++i) { padding_diff[i] = std::abs(paddings_[2 * i] - paddings_[2 * i + 1]); padding_common[i] = std::min(paddings_[2 * i], paddings_[2 * i + 1]); new_dout_shape_vec[i + 2] = dout_transpose.dims()[i + 2] + padding_diff[i]; x_pad[2 * i + 4] = paddings_[2 * i] - padding_common[i]; x_pad[2 * i + 4 + 1] = paddings_[2 * i + 1] - padding_common[i]; } transformed_dout.Resize(make_ddim(new_dout_shape_vec)); ctx.template Alloc(&transformed_dout); const int rank = x_transpose.dims().size(); T pad_value(0.0); switch (rank) { case 4: { funcs::PadFunction( ctx, x_pad, dout_transpose, pad_value, &transformed_dout); } break; case 5: { funcs::PadFunction( ctx, x_pad, dout_transpose, pad_value, &transformed_dout); } break; default: PADDLE_THROW(errors::InvalidArgument( "Op(ConvTranspose) only supports 4-D or 5-D x DenseTensor.")); } } else { transformed_dout = dout_transpose; if (paddings_.size() == data_dim) { for (size_t i = 0; i < data_dim; ++i) { padding_common[i] = paddings_[i]; } } else { for (size_t i = 0; i < data_dim; ++i) { padding_common[i] = paddings_[2 * i]; } } } const T* x_data = x_transpose.data(); const T* dout_data = transformed_dout.data(); out_vec = vectorize(transformed_dout.dims()); // ------------------- cudnn descriptors --------------------- GPUDNNDataLayout layout; if (strides.size() == 2U) { layout = GPUDNNDataLayout::kNCHW; } else { layout = GPUDNNDataLayout::kNCDHW; } int iwo_groups = groups; int c_groups = 1; #if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1) iwo_groups = 1; c_groups = groups; groups = 1; #endif auto dtype = paddle::platform::CudnnDataType::type; ConvArgs args1{&transformed_dout, &filter, &x_transpose, strides, padding_common, dilations_, dtype, groups, layout}; ConvArgs args2{&transformed_dout, &filter, &x_transpose, strides, padding_common, dilations_, dtype, groups, layout}; #ifdef PADDLE_WITH_HIP SearchResult fwd_result; SearchResult filter_result; #else SearchResult fwd_result; SearchResult filter_result; #endif auto layout_tensor = paddle::platform::GetCudnnTensorFormat(layout); size_t workspace_size = 0; auto handle = ctx.cudnn_handle(); bool deterministic = FLAGS_cudnn_deterministic; T* dx_data = nullptr; T* dfilter_data = nullptr; if (dx) { dx_data = ctx.template Alloc(dx); args1.handle = handle; args1.idesc.set(transformed_dout, iwo_groups); args1.wdesc.set(filter, layout_tensor, iwo_groups); args1.odesc.set(x_transpose, iwo_groups); args1.cdesc.set(dtype, padding_common, strides, dilations_, paddle::platform::AllowTF32Cudnn(), c_groups); #ifdef PADDLE_WITH_HIP using search1 = SearchAlgorithm; workspace_size = std::max(workspace_size, search1::GetWorkspaceSize(args1)); fwd_result.algo = search1::Find(args1, false, deterministic, workspace_size, ctx); #else using search1 = SearchAlgorithm; fwd_result = search1::Find(ctx, args1, false, deterministic, false); workspace_size = std::max( workspace_size, search1::GetWorkspaceSize(args1, fwd_result.algo)); #endif } if (dfilter) { dfilter_data = ctx.template Alloc(dfilter); args2.handle = handle; args2.idesc.set(transformed_dout, iwo_groups); args2.wdesc.set(*dfilter, layout_tensor, iwo_groups); args2.odesc.set(x_transpose, iwo_groups); args2.cdesc.set(dtype, padding_common, strides, dilations_, paddle::platform::AllowTF32Cudnn(), c_groups); #ifdef PADDLE_WITH_HIP using search2 = SearchAlgorithm; workspace_size = std::max(workspace_size, search2::GetWorkspaceSize(args2)); filter_result.algo = search2::Find(args2, false, deterministic, workspace_size, ctx); #else using search2 = SearchAlgorithm; filter_result = search2::Find(ctx, args2, false, deterministic, false); workspace_size = std::max( workspace_size, search2::GetWorkspaceSize(args2, filter_result.algo)); #endif } // ------------------- cudnn conv backward data --------------------- // FIxME(typhoonzero): template type T may not be the same as cudnn call. int x_offset = x.numel() / x.dims()[0] / groups; int dout_offset = transformed_dout.numel() / transformed_dout.dims()[0] / groups; int filter_offset = filter.numel() / groups; ScalingParamType alpha = 1.0f; ScalingParamType beta = 0.0f; auto workspace_handle = ctx.cudnn_workspace_handle(); if (dx) { // Because beta is zero, it is unnecessary to reset dx. for (int g = 0; g < groups; g++) { #ifdef PADDLE_WITH_HIP auto cudnn_func = [&](void* cudnn_workspace) { PADDLE_ENFORCE_GPU_SUCCESS( dynload::miopenConvolutionForward(handle, &alpha, args1.idesc.desc(), dout_data + dout_offset * g, args1.wdesc.desc(), filter_data + filter_offset * g, args1.cdesc.desc(), fwd_result.algo, &beta, args1.odesc.desc(), dx_data + x_offset * g, cudnn_workspace, workspace_size)); }; #else // PADDLE_WITH_HIP auto cudnn_func = [&](void* cudnn_workspace) { PADDLE_ENFORCE_GPU_SUCCESS( dynload::cudnnConvolutionForward(handle, &alpha, args1.idesc.desc(), dout_data + dout_offset * g, args1.wdesc.desc(), filter_data + filter_offset * g, args1.cdesc.desc(), fwd_result.algo, cudnn_workspace, workspace_size, &beta, args1.odesc.desc(), dx_data + x_offset * g)); }; #endif // PADDLE_WITH_HIP workspace_handle.RunFunc(cudnn_func, workspace_size); } if (data_layout == GPUDNNDataLayout::kNHWC) { DenseTensor dx_transpose; DenseTensor dx_nchw; dx_nchw.ShareDataWith(*dx); dx_nchw.Resize(make_ddim(x_vec)); if (strides.size() == 2U) { std::vector axis = {0, 2, 3, 1}; dx_transpose = Transpose(ctx, dx_nchw, axis); *dx = dx_transpose; } else if (strides.size() == 3U) { std::vector axis = {0, 2, 3, 4, 1}; dx_transpose = Transpose(ctx, dx_nchw, axis); *dx = dx_transpose; } } } // ------------------- cudnn conv backward filter --------------------- if (dfilter) { // Because beta is zero, it is unnecessary to reset dfilter. // Gradient with respect to the filter for (int g = 0; g < groups; g++) { #ifdef PADDLE_WITH_HIP auto cudnn_func = [&](void* cudnn_workspace) { PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenConvolutionBackwardWeights( handle, &alpha, args2.odesc.desc(), x_data + x_offset * g, args2.idesc.desc(), dout_data + dout_offset * g, args2.cdesc.desc(), filter_result.algo, &beta, args2.wdesc.desc(), dfilter_data + filter_offset * g, cudnn_workspace, workspace_size)); }; #else // PADDLE_WITH_HIP auto cudnn_func = [&](void* cudnn_workspace) { PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnConvolutionBackwardFilter( handle, &alpha, args2.idesc.desc(), dout_data + dout_offset * g, args2.odesc.desc(), x_data + x_offset * g, args2.cdesc.desc(), filter_result.algo, cudnn_workspace, workspace_size, &beta, args2.wdesc.desc(), dfilter_data + filter_offset * g)); }; #endif // PADDLE_WITH_HIP workspace_handle.RunFunc(cudnn_func, workspace_size); } } } template void Conv2dTransposeGradGPUDNNKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& filter, const DenseTensor& dout, const std::vector& strides, const std::vector& paddings_, const std::vector& output_padding, const IntArray& output_size, const std::string& padding_algorithm, int groups, const std::vector& dilations_, const std::string& data_format, DenseTensor* dx, DenseTensor* dfilter) { ConvTransposeGradRawGPUDNNKernel(ctx, x, filter, dout, strides, paddings_, padding_algorithm, groups, dilations_, data_format, dx, dfilter); } /* * Inputs: I, filter, dout, ddI, ddfilter * Outputs: ddout, dfilter, dI * ddo = conv_bp_data(filter, ddI) + conv_bp_data(ddfilter, I) * dfilter = conv_bp_filter(dout, ddI) * dI = conv(dout, ddfilter) */ template void Conv2dTransposeDoubleGradGPUDNNKernel( const Context& ctx, const DenseTensor& x, const DenseTensor& filter, const DenseTensor& dout, const DenseTensor& ddx, const DenseTensor& ddfilter, const std::vector& strides, const std::vector& paddings, const std::vector& output_padding, const IntArray& output_size, const std::string& padding_algorithm, int groups, const std::vector& dilations, const std::string& data_format, DenseTensor* dx, DenseTensor* dfilter, DenseTensor* ddout) { if (dx) { ctx.template Alloc(dx); } if (dfilter) { ctx.template Alloc(dfilter); } if (ddout) { ctx.template Alloc(ddout); funcs::SetConstant set_zero; set_zero(ctx, ddout, static_cast(0)); } const T* filter_ = filter.data(); const T* dout_ = dout.data(); const T* ddx_ = nullptr; const T* ddfilter_ = nullptr; T* dx_ = nullptr; T* dfilter_ = nullptr; T* ddout_ = nullptr; T* transformed_dx_ = nullptr; std::vector paddings_ = paddings; std::vector dilations_ = dilations; bool deterministic = FLAGS_cudnn_deterministic; const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC"); // transform DenseTensors to channel first----------- DenseTensor transformed_x_channel(x.type()); DenseTensor transformed_dout_channel(dout.type()); DenseTensor transformed_ddx_channel(x.type()); DenseTensor transformed_dx_channel(x.type()); DenseTensor transformed_ddout_channel(dout.type()); if (channel_last) { ResizeToChannelFirst(ctx, &x, &transformed_x_channel); TransToChannelFirst(ctx, &x, &transformed_x_channel); ResizeToChannelFirst(ctx, &dout, &transformed_dout_channel); TransToChannelFirst(ctx, &dout, &transformed_dout_channel); ResizeToChannelFirst(ctx, &ddx, &transformed_ddx_channel); TransToChannelFirst(ctx, &ddx, &transformed_ddx_channel); if (dx) { ResizeToChannelFirst(ctx, dx, &transformed_dx_channel); ctx.template Alloc(&transformed_dx_channel); } if (ddout) { ResizeToChannelFirst(ctx, ddout, &transformed_ddout_channel); } } else { transformed_x_channel = x; transformed_dout_channel = dout; transformed_ddx_channel = ddx; if (dx) { transformed_dx_channel = *dx; } } std::vector out_vec = vectorize(transformed_dout_channel.dims()); auto x_dims = transformed_x_channel.dims(); auto filter_dims = filter.dims(); DDim x_data_dims = slice_ddim(x_dims, 2, x_dims.size()); DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size()); std::vector ksize = vectorize(filter_data_dims); UpdatePaddingAndDilation( &paddings_, &dilations_, padding_algorithm, x_data_dims, strides, ksize); int data_dim = strides.size(); // 2d or 3d bool is_sys_pad = funcs::IsSymmetricPadding(paddings_, data_dim); DenseTensor transformed_x(x.type()); DenseTensor transformed_ddx(x.type()); DenseTensor transformed_dout(dout.type()); std::vector padding_common(data_dim, 0); std::vector input_pad(x.dims().size() * 2, 0); if (!is_sys_pad) { // get pad std::vector padding_diff(data_dim); std::vector new_input_shape_vec(data_dim + 2); std::vector new_output_grad_shape_vec(data_dim + 2); new_input_shape_vec[0] = transformed_x_channel.dims()[0]; new_input_shape_vec[1] = transformed_x_channel.dims()[1]; new_output_grad_shape_vec[0] = transformed_dout_channel.dims()[0]; new_output_grad_shape_vec[1] = transformed_dout_channel.dims()[1]; for (size_t i = 0; i < data_dim; ++i) { padding_diff[i] = std::abs(paddings_[2 * i] - paddings_[2 * i + 1]); padding_common[i] = std::min(paddings_[2 * i], paddings_[2 * i + 1]); new_input_shape_vec[i + 2] = transformed_x_channel.dims()[i + 2] + padding_diff[i]; new_output_grad_shape_vec[i + 2] = transformed_dout_channel.dims()[i + 2] + padding_diff[i]; input_pad[2 * i + 4] = paddings_[2 * i] - padding_common[i]; input_pad[2 * i + 4 + 1] = paddings_[2 * i + 1] - padding_common[i]; } DDim new_input_shape(make_ddim(new_input_shape_vec)); transformed_x.Resize(new_input_shape); transformed_ddx.Resize(new_input_shape); transformed_dout.Resize(make_ddim(new_output_grad_shape_vec)); ctx.template Alloc(&transformed_x); ctx.template Alloc(&transformed_ddx); ctx.template Alloc(&transformed_dout); // pad for input const int rank = x.dims().size(); T pad_value(0.0); switch (rank) { case 4: { funcs::PadFunction( ctx, input_pad, transformed_x_channel, pad_value, &transformed_x); funcs::PadFunction(ctx, input_pad, transformed_dout_channel, pad_value, &transformed_dout); funcs::PadFunction(ctx, input_pad, transformed_ddx_channel, pad_value, &transformed_ddx); } break; case 5: { funcs::PadFunction( ctx, input_pad, transformed_x_channel, pad_value, &transformed_x); funcs::PadFunction(ctx, input_pad, transformed_ddx_channel, pad_value, &transformed_ddx); } break; default: PADDLE_THROW(errors::InvalidArgument( "ConvOp only support tensors with 4 or 5 dimensions.")); } } else { transformed_x = transformed_x_channel; transformed_dout = transformed_dout_channel; transformed_ddx = transformed_ddx_channel; if (paddings_.size() == data_dim) { for (size_t i = 0; i < data_dim; ++i) { padding_common[i] = paddings_[i]; } } else { for (size_t i = 0; i < data_dim; ++i) { padding_common[i] = paddings_[2 * i]; } } } std::vector starts(data_dim, 0); std::vector ends(data_dim, 0); std::vector axes(data_dim, 0); for (size_t i = 0; i < data_dim; ++i) { starts[i] = input_pad[2 * i + 4] * (strides[i] + 1); ends[i] = starts[i] + out_vec[i + 2]; axes[i] = i + 2; } std::vector transformed_out_vec = out_vec; for (size_t i = 0; i < data_dim; ++i) { transformed_out_vec[i + 2] = out_vec[i + 2] + (input_pad[2 * i + 4] + input_pad[2 * i + 5]) * strides[i] - 2 * padding_common[i] + paddings_[2 * i] + paddings_[2 * i + 1]; } if (!is_sys_pad) { transformed_ddout_channel.Resize(make_ddim(transformed_out_vec)); ctx.template Alloc(&transformed_ddout_channel); } else { ctx.template Alloc(ddout); transformed_ddout_channel = *ddout; transformed_ddout_channel.Resize(make_ddim(transformed_out_vec)); } const T* x_ = transformed_x.data(); int iwo_group = groups; int c_group = 1; #if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1) iwo_group = 1; c_group = groups; groups = 1; #endif auto dtype = paddle::platform::CudnnDataType::type; auto handle = ctx.cudnn_handle(); auto layout = paddle::platform::GetCudnnTensorFormat(GPUDNNDataLayout::kNCHW); ConvArgs args1{&transformed_ddout_channel, &filter, &transformed_ddx, strides, padding_common, dilations_, dtype, groups, GPUDNNDataLayout::kNCHW}; ConvArgs args2{&transformed_ddout_channel, &ddfilter, &transformed_x, strides, padding_common, dilations_, dtype, groups, GPUDNNDataLayout::kNCHW}; ConvArgs args3{&transformed_dout, dfilter, &transformed_ddx_channel, strides, padding_common, dilations_, dtype, groups, GPUDNNDataLayout::kNCHW}; ConvArgs args4{&transformed_dout, &ddfilter, &transformed_dx_channel, strides, padding_common, dilations_, dtype, groups, GPUDNNDataLayout::kNCHW}; #ifdef PADDLE_WITH_HIP SearchResult bwd_result1; SearchResult bwd_result2; SearchResult filter_result; SearchResult fwd_result; #else SearchResult bwd_result1; SearchResult bwd_result2; SearchResult filter_result; SearchResult fwd_result; #endif // ddo = conv(ddI, filter) + conv(I, ddfilter) size_t workspace_size = 0; T* transformed_ddout_channel_ = nullptr; if (ddout) { ddout_ = ddout->data(); transformed_ddout_channel_ = transformed_ddout_channel.data(); args1.handle = handle; args1.idesc.set(transformed_ddout_channel, iwo_group); args1.wdesc.set(filter, layout, iwo_group); args1.odesc.set(transformed_ddx, iwo_group); args1.cdesc.set(dtype, padding_common, strides, dilations_, paddle::platform::AllowTF32Cudnn(), c_group); #ifdef PADDLE_WITH_HIP using search1 = SearchAlgorithm; workspace_size = search1::GetWorkspaceSize(args1); bwd_result1.algo = search1::Find(args1, false, deterministic, workspace_size, ctx); #else using search1 = SearchAlgorithm; bwd_result1 = search1::Find(ctx, args1, false, deterministic, false); workspace_size = search1::GetWorkspaceSize(args1, bwd_result1.algo); #endif ddfilter_ = ddfilter.data(); args2.handle = handle; args2.idesc.set(transformed_ddout_channel, iwo_group); args2.wdesc.set(ddfilter, layout, iwo_group); args2.odesc.set(transformed_x, iwo_group); args2.cdesc.set(dtype, padding_common, strides, dilations_, paddle::platform::AllowTF32Cudnn(), c_group); #ifdef PADDLE_WITH_HIP using search2 = SearchAlgorithm; workspace_size = std::max(workspace_size, search2::GetWorkspaceSize(args2)); bwd_result2.algo = search2::Find(args2, false, deterministic, workspace_size, ctx); #else using search2 = SearchAlgorithm; bwd_result2 = search2::Find(ctx, args2, false, deterministic, false); workspace_size = std::max( workspace_size, search2::GetWorkspaceSize(args2, bwd_result2.algo)); #endif } if (dfilter) { dfilter_ = dfilter->data(); args3.handle = handle; args3.idesc.set(transformed_dout, iwo_group); args3.wdesc.set(*dfilter, layout, iwo_group); args3.odesc.set(transformed_ddx_channel, iwo_group); args3.cdesc.set(dtype, padding_common, strides, dilations_, paddle::platform::AllowTF32Cudnn(), c_group); #ifdef PADDLE_WITH_HIP using search3 = SearchAlgorithm; workspace_size = std::max(workspace_size, search3::GetWorkspaceSize(args3)); filter_result.algo = search3::Find(args3, false, deterministic, workspace_size, ctx); #else using search3 = SearchAlgorithm; filter_result = search3::Find(ctx, args3, false, deterministic, false); workspace_size = std::max( workspace_size, search3::GetWorkspaceSize(args3, filter_result.algo)); #endif } if (dx) { transformed_dx_ = transformed_dx_channel.data(); args4.handle = handle; args4.idesc.set(transformed_dout, iwo_group); args4.wdesc.set(ddfilter, layout, iwo_group); args4.odesc.set(transformed_dx_channel, iwo_group); args4.cdesc.set(dtype, padding_common, strides, dilations_, paddle::platform::AllowTF32Cudnn(), c_group); #ifdef PADDLE_WITH_HIP using search4 = SearchAlgorithm; workspace_size = std::max(workspace_size, search4::GetWorkspaceSize(args4)); fwd_result.algo = search4::Find(args4, false, deterministic, workspace_size, ctx); #else using search4 = SearchAlgorithm; fwd_result = search4::Find(ctx, args4, false, deterministic, false); workspace_size = std::max( workspace_size, search4::GetWorkspaceSize(args4, fwd_result.algo)); #endif } int i_n, i_c, i_d, i_h, i_w; GetNCDHW(transformed_x.dims(), GPUDNNDataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h, &i_w); int o_n, o_c, o_d, o_h, o_w; GetNCDHW(transformed_dout.dims(), GPUDNNDataLayout::kNCHW, &o_n, &o_c, &o_d, &o_h, &o_w); int group_offset_in = transformed_x.numel() / transformed_x.dims()[0] / groups; int group_offset_out = transformed_dout.numel() / transformed_dout.dims()[0] / groups; int group_offset_filter = filter.numel() / groups; ScalingParamType alpha = 1.0f; ScalingParamType beta = 0.0f; auto wkspace_handle = ctx.cudnn_workspace_handle(); if (ddout) { ddx_ = transformed_ddx.data(); for (int i = 0; i < groups; i++) { #ifdef PADDLE_WITH_HIP wkspace_handle.RunFunc( [&](void* workspace_ptr) { PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenConvolutionBackwardData( handle, &alpha, args1.odesc.desc(), ddx_ + i * group_offset_in, args1.wdesc.desc(), filter_ + i * group_offset_filter, args1.cdesc.desc(), bwd_result1.algo, &beta, args1.idesc.desc(), transformed_ddout_channel_ + i * group_offset_out, workspace_ptr, workspace_size)); }, workspace_size); #else // PADDLE_WITH_HIP wkspace_handle.RunFunc( [&](void* workspace_ptr) { PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnConvolutionBackwardData( handle, &alpha, args1.wdesc.desc(), filter_ + i * group_offset_filter, args1.odesc.desc(), ddx_ + i * group_offset_in, args1.cdesc.desc(), bwd_result1.algo, workspace_ptr, workspace_size, &beta, args1.idesc.desc(), transformed_ddout_channel_ + i * group_offset_out)); }, workspace_size); #endif // PADDLE_WITH_HIP } for (int i = 0; i < groups; i++) { #ifdef PADDLE_WITH_HIP // MIOPEN ONLY support beta to be 0.0f DenseTensor conv_x_ddfilter(dout.type()); conv_x_ddfilter.Resize(transformed_ddout_channel.dims()); T* conv_x_ddfilter_data = ctx.template Alloc(&conv_x_ddfilter); wkspace_handle.RunFunc( [&](void* workspace_ptr) { PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenConvolutionBackwardData( handle, &alpha, args2.odesc.desc(), x_ + i * group_offset_in, args2.wdesc.desc(), ddfilter_ + i * group_offset_filter, args2.cdesc.desc(), bwd_result2.algo, &beta, args2.idesc.desc(), conv_x_ddfilter_data + i * group_offset_out, workspace_ptr, workspace_size)); }, workspace_size); PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenOpTensor( handle, miopenTensorOpAdd, &alpha, args2.idesc.desc(), transformed_ddout_channel_ + i * group_offset_out, &alpha, args2.idesc.desc(), conv_x_ddfilter_data + i * group_offset_out, &beta, args2.idesc.desc(), transformed_ddout_channel_ + i * group_offset_out)); #else // PADDLE_WITH_HIP wkspace_handle.RunFunc( [&](void* workspace_ptr) { PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnConvolutionBackwardData( handle, &alpha, args2.wdesc.desc(), ddfilter_ + i * group_offset_filter, args2.odesc.desc(), x_ + i * group_offset_in, args2.cdesc.desc(), bwd_result2.algo, workspace_ptr, workspace_size, &alpha, args2.idesc.desc(), transformed_ddout_channel_ + i * group_offset_out)); }, workspace_size); #endif // PADDLE_WITH_HIP } if ((!is_sys_pad) && (!channel_last)) { if (strides.size() == 2U) { funcs::Slice( ctx, &transformed_ddout_channel, ddout, starts, ends, axes); } else if (!is_sys_pad && strides.size() == 3U) { funcs::Slice( ctx, &transformed_ddout_channel, ddout, starts, ends, axes); } } else if ((!is_sys_pad) && (channel_last)) { if (strides.size() == 2U) { funcs::Slice(ctx, &transformed_ddout_channel, &transformed_ddout_channel, starts, ends, axes); } else if (!is_sys_pad && strides.size() == 3U) { funcs::Slice(ctx, &transformed_ddout_channel, &transformed_ddout_channel, starts, ends, axes); } TransToChannelLast(ctx, &transformed_ddout_channel, ddout); } } T* transformed_dout_channel_ = transformed_dout.data(); if (dfilter) { ddx_ = transformed_ddx_channel.data(); for (int i = 0; i < groups; i++) { #ifdef PADDLE_WITH_HIP wkspace_handle.RunFunc( [&](void* workspace_ptr) { PADDLE_ENFORCE_GPU_SUCCESS( dynload::miopenConvolutionBackwardWeights( handle, &alpha, args3.odesc.desc(), ddx_ + i * group_offset_in, args3.idesc.desc(), transformed_dout_channel_ + i * group_offset_out, args3.cdesc.desc(), filter_result.algo, &beta, args3.wdesc.desc(), dfilter_ + i * group_offset_filter, workspace_ptr, workspace_size)); }, workspace_size); #else // PADDLE_WITH_HIP wkspace_handle.RunFunc( [&](void* workspace_ptr) { PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnConvolutionBackwardFilter( handle, &alpha, args3.idesc.desc(), transformed_dout_channel_ + i * group_offset_out, args3.odesc.desc(), ddx_ + i * group_offset_in, args3.cdesc.desc(), filter_result.algo, workspace_ptr, workspace_size, &beta, args3.wdesc.desc(), dfilter_ + i * group_offset_filter)); }, workspace_size); #endif // PADDLE_WITH_HIP } } if (dx) { ddfilter_ = ddfilter.data(); for (int i = 0; i < groups; i++) { #ifdef PADDLE_WITH_HIP wkspace_handle.RunFunc( [&](void* workspace_ptr) { PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenConvolutionForward( handle, &alpha, args4.idesc.desc(), transformed_dout_channel_ + i * group_offset_out, args4.wdesc.desc(), ddfilter_ + i * group_offset_filter, args4.cdesc.desc(), fwd_result.algo, &beta, args4.odesc.desc(), transformed_dx_ + i * group_offset_in, workspace_ptr, workspace_size)); }, workspace_size); #else // PADDLE_WITH_HIP wkspace_handle.RunFunc( [&](void* workspace_ptr) { PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnConvolutionForward( handle, &alpha, args4.idesc.desc(), transformed_dout_channel_ + i * group_offset_out, args4.wdesc.desc(), ddfilter_ + i * group_offset_filter, args4.cdesc.desc(), fwd_result.algo, workspace_ptr, workspace_size, &beta, args4.odesc.desc(), transformed_dx_ + i * group_offset_in)); }, workspace_size); #endif // PADDLE_WITH_HIP } if (channel_last) { TransToChannelLast(ctx, &transformed_dx_channel, dx); } } } template void Conv3dTransposeGradGPUDNNKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& filter, const DenseTensor& dout, const std::vector& strides, const std::vector& paddings_, const std::vector& output_padding, const std::vector& output_size, const std::string& padding_algorithm, int groups, const std::vector& dilations_, const std::string& data_format, DenseTensor* dx, DenseTensor* dfilter) { ConvTransposeGradRawGPUDNNKernel(ctx, x, filter, dout, strides, paddings_, padding_algorithm, groups, dilations_, data_format, dx, dfilter); } } // namespace phi using float16 = phi::dtype::float16; #ifdef PADDLE_WITH_HIP // MIOPEN do not support double PD_REGISTER_KERNEL(conv2d_transpose_grad, GPUDNN, ALL_LAYOUT, phi::Conv2dTransposeGradGPUDNNKernel, float, float16) {} PD_REGISTER_KERNEL(conv2d_transpose_grad_grad, GPUDNN, ALL_LAYOUT, phi::Conv2dTransposeDoubleGradGPUDNNKernel, float, float16) {} PD_REGISTER_KERNEL(conv3d_transpose_grad, GPUDNN, ALL_LAYOUT, phi::Conv3dTransposeGradGPUDNNKernel, float, float16) {} #else PD_REGISTER_KERNEL(conv2d_transpose_grad, GPUDNN, ALL_LAYOUT, phi::Conv2dTransposeGradGPUDNNKernel, float, double, float16) {} PD_REGISTER_KERNEL(conv2d_transpose_grad_grad, GPUDNN, ALL_LAYOUT, phi::Conv2dTransposeDoubleGradGPUDNNKernel, float, double, float16) {} PD_REGISTER_KERNEL(conv3d_transpose_grad, GPUDNN, ALL_LAYOUT, phi::Conv3dTransposeGradGPUDNNKernel, float, double, float16) {} #endif