/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include #include "paddle/trainer/Trainer.h" using namespace paddle; // NOLINT using namespace std; // NOLINT DECLARE_int32(gpu_id); DECLARE_bool(local); DECLARE_bool(use_gpu); DECLARE_string(config); DECLARE_string(nics); DEFINE_bool(need_high_accuracy, false, "whether need to run in double accuracy"); DEFINE_double( max_diff_ratio, 0.0f, "max diff ratio allowed for outputs and parameters (value/gradient)"); DECLARE_bool(thread_local_rand_use_global_seed); DECLARE_int32(seed); static const string& config_file_a = "gserver/tests/sequence_recurrent.py"; static const string& config_file_b = "gserver/tests/sequence_recurrent_group.py"; struct ComData { vector outArgs; vector parameters; }; void calcGradient(ComData& data, const string configFile) { FLAGS_config = configFile; FLAGS_local = true; FLAGS_use_gpu = false; FLAGS_nics = ""; *ThreadLocalRand::getSeed() = FLAGS_seed; srand(FLAGS_seed); Trainer trainer; trainer.init(TrainerConfigHelper::createFromFlagConfig(), false); data.parameters = trainer.getGradientMachine()->getParameters(); DataBatch dataBatch; int32_t batchSize = trainer.getConfig().opt_config().batch_size(); trainer.getDataProvider()->reset(); trainer.getDataProvider()->setSkipShuffle(); trainer.getDataProvider()->getNextBatch(batchSize, &dataBatch); CHECK(dataBatch.getSize()) << "No data from data provider"; vector& inArgs = dataBatch.getStreams(); trainer.getGradientMachine()->start(); trainer.getGradientMachine()->forwardBackward( inArgs, &data.outArgs, PASS_TRAIN); trainer.getGradientMachine()->finish(); } void checkBuffer(real* A, const char* desA, real* B, const char* desB, size_t len, size_t width = 1) { int nNum = 0; real maxVal = 0; for (size_t i = 0; i < len; ++i) { maxVal = std::max(maxVal, std::max(A[i], B[i])); } real maxDiff = 0; for (size_t i = 0; i < len; ++i) { real diff = fabs(A[i] - B[i]); maxDiff = std::max(maxDiff, diff); if (diff > maxVal * FLAGS_max_diff_ratio) { nNum++; VLOG(1) << "Row: " << i / width << ", " << desA << " : " << A[i] << " " << desB << " : " << B[i] << " diff=" << diff; } } EXPECT_EQ(0, nNum); LOG(INFO) << "maxValue=" << maxVal << " maxDiff=" << maxDiff << "\n\n"; } void compareGradient(ComData& comDataA, ComData& comDataB) { vector outArgsA = comDataA.outArgs; vector outArgsB = comDataB.outArgs; for (size_t i = 0; i < outArgsA.size(); ++i) { CpuMatrix matA(outArgsA[i].value->getHeight(), outArgsA[i].value->getWidth()); CpuMatrix matB(outArgsB[i].value->getHeight(), outArgsB[i].value->getWidth()); matA.copyFrom(*outArgsA[i].value); matB.copyFrom(*outArgsB[i].value); LOG(INFO) << "\n--------------------------------" << " Check Network Output_" << i << ":" << " -------------------------------------\n"; checkBuffer(matA.getData(), "network A output", matB.getData(), "network B output", matA.getElementCnt(), matA.getWidth()); } vector& parametersA = comDataA.parameters; vector& parametersB = comDataB.parameters; LOG(INFO) << "\n\n--------------------------------" << " Check Gradient Machine Parameters:" << " -------------------------------------\n"; for (size_t i = 0; i < parametersA.size(); ++i) { ParameterPtr parameterA, parameterB; parameterA = parametersA[i]; parameterB = parametersB[i]; CpuVector paraA(parameterA->getSize()); CpuVector paraB(parameterB->getSize()); paraA.copyFrom(*parameterA->getBuf(PARAMETER_VALUE)); paraB.copyFrom(*parameterB->getBuf(PARAMETER_VALUE)); LOG(INFO) << "\n\n----------- PARAMETER_VALUE: " << parameterA->getName() << " ; size : " << paraA.getSize() << " ------------"; checkBuffer(paraA.getData(), "Network A", paraB.getData(), "Network B", paraA.getSize()); CpuVector gradA(*parameterA->getBuf(PARAMETER_GRADIENT)); CpuVector gradB(*parameterB->getBuf(PARAMETER_GRADIENT)); LOG(INFO) << "\n\n----------- PARAMETER_GRADIENT: " << parameterA->getName() << " ; size : " << gradA.getSize() << " -----------"; checkBuffer(gradA.getData(), "Network A", gradB.getData(), "Network B", gradA.getSize()); } } TEST(Trainer, create) { ComData dataA; calcGradient(dataA, config_file_a); LOG(INFO) << "\n\nforwardBackward of Network A is finished\n\n"; ComData dataB; calcGradient(dataB, config_file_b); LOG(INFO) << "\n\nforwardBackward of the Network B is finished\n\n"; compareGradient(dataA, dataB); } int main(int argc, char** argv) { FLAGS_thread_local_rand_use_global_seed = true; paddle::initMain(argc, argv); testing::InitGoogleTest(&argc, argv); initPython(argc, argv); #ifndef PADDLE_TYPE_DOUBLE if (FLAGS_need_high_accuracy) { LOG(INFO) << "skip test due to it's need high accuracy"; return 0; } if (FLAGS_max_diff_ratio == 0.0f) { FLAGS_max_diff_ratio = 1e-5; LOG(INFO) << "auto set max_diff_ratio " << FLAGS_max_diff_ratio << " in low accuracy mode"; } #else if (FLAGS_max_diff_ratio == 0.0f) { FLAGS_max_diff_ratio = 1e-10; LOG(INFO) << "auto set max_diff_ratio " << FLAGS_max_diff_ratio << " in high accuracy mode"; } #endif int ret = RUN_ALL_TESTS(); return ret; }