# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from paddle.trainer.PyDataProvider2 import * # Note that each config should has an independent provider # in current design of PyDataProvider2. ####################################################### data = [ [[[1, 3, 2], [4, 5, 2]], 0], [[[0, 2], [2, 5], [0, 1, 2]], 1], ] # Used for sequence_nest_rnn.conf @provider( input_types=[integer_value_sub_sequence(10), integer_value(3)], should_shuffle=False) def process_subseq(settings, file_name): for d in data: yield d # Used for sequence_rnn.conf @provider( input_types=[integer_value_sequence(10), integer_value(3)], should_shuffle=False) def process_seq(settings, file_name): for d in data: seq = [] for subseq in d[0]: seq += subseq yield seq, d[1] # Used for sequence_nest_rnn_multi_input.conf @provider( input_types=[integer_value_sub_sequence(10), integer_value(3)], should_shuffle=False) def process_subseq2(settings, file_name): for d in data: yield d # Used for sequence_rnn_multi_input.conf @provider( input_types=[integer_value_sequence(10), integer_value(3)], should_shuffle=False) def process_seq2(settings, file_name): for d in data: seq = [] for subseq in d[0]: seq += subseq yield seq, d[1] ########################################################### data2 = [ [[[1, 2], [4, 5, 2]], [[5, 4, 1], [3, 1]], 0], [[[0, 2], [2, 5], [0, 1, 2]], [[1, 5], [4], [2, 3, 6, 1]], 1], ] # Used for sequence_nest_rnn_multi_unequalength_inputs.conf @provider( input_types=[ integer_value_sub_sequence(10), integer_value_sub_sequence(10), integer_value(2) ], should_shuffle=False) def process_unequalength_subseq(settings, file_name): for d in data2: yield d # Used for sequence_rnn_multi_unequalength_inputs.conf @provider( input_types=[ integer_value_sequence(10), integer_value_sequence(10), integer_value(2) ], should_shuffle=False) def process_unequalength_seq(settings, file_name): for d in data2: words1 = reduce(lambda x, y: x + y, d[0]) words2 = reduce(lambda x, y: x + y, d[1]) yield words1, words2, d[2] ########################################################### data3 = [ [[[1, 2], [4, 5, 2]], [1, 2], 0], [[[0, 2], [2, 5], [0, 1, 2]], [2, 3, 0], 1], ] # Used for sequence_nest_mixed_inputs.conf @provider( input_types=[ integer_value_sub_sequence(10), integer_value_sequence(10), integer_value(2) ], should_shuffle=False) def process_mixed(settings, file_name): for d in data3: yield d