// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/reshape_kernel.h" #include "paddle/phi/backends/all_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_utils.h" #include "paddle/phi/infermeta/unary.h" #include "paddle/phi/kernels/funcs/common_shape.h" #ifdef PADDLE_WITH_XPU #include "paddle/phi/backends/xpu/enforce_xpu.h" #endif namespace phi { template void ReshapeInferKernel(const Context& dev_ctx, const DenseTensor& x, const IntArray& shape, DenseTensor* out) { MetaTensor meta_out(out); InferMetaFromVecValue(x, shape.GetData(), &meta_out); if (x.initialized() && x.Holder() == out->Holder()) { dev_ctx.Alloc(out, x.dtype()); return; } dev_ctx.Alloc(out, x.dtype()); // TODO(chenweihang): the output dims are overwrite after copying, // here we need to use copy method that only copy data auto dims = out->dims(); phi::Copy(dev_ctx, x, dev_ctx.GetPlace(), false, out); out->Resize(dims); out->ResetLoD(x.lod()); } #ifdef PADDLE_WITH_XPU template <> void ReshapeInferKernel(const XPUContext& dev_ctx, const DenseTensor& x, const IntArray& shape, DenseTensor* out) { MetaTensor meta_out(out); InferMetaFromVecValue(x, shape.GetData(), &meta_out); if (x.initialized() && x.Holder() == out->Holder()) { dev_ctx.Alloc(out, x.dtype()); return; } dev_ctx.Alloc(out, x.dtype()); auto dims = out->dims(); auto* src_ptr = x.data(); auto* dst_ptr = out->data(); auto size = x.numel() * paddle::experimental::SizeOf(x.dtype()); int ret = xpu::copy(dev_ctx.x_context(), reinterpret_cast(src_ptr), reinterpret_cast(dst_ptr), size); PADDLE_ENFORCE_XDNN_SUCCESS(ret, "copy"); out->Resize(dims); out->ResetLoD(x.lod()); } #endif template void ReshapeKernel(const Context& dev_ctx, const DenseTensor& x, const IntArray& shape, DenseTensor* out, DenseTensor* xshape) { ReshapeInferKernel(dev_ctx, x, shape, out); } } // namespace phi PD_REGISTER_GENERAL_KERNEL(reshape_infer, CPU, ALL_LAYOUT, phi::ReshapeInferKernel, ALL_DTYPE) {} PD_REGISTER_GENERAL_KERNEL( reshape, CPU, ALL_LAYOUT, phi::ReshapeKernel, ALL_DTYPE) {} #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) PD_REGISTER_GENERAL_KERNEL(reshape_infer, GPU, ALL_LAYOUT, phi::ReshapeInferKernel, ALL_DTYPE) {} PD_REGISTER_GENERAL_KERNEL( reshape, GPU, ALL_LAYOUT, phi::ReshapeKernel, ALL_DTYPE) {} #endif #ifdef PADDLE_WITH_XPU PD_REGISTER_GENERAL_KERNEL(reshape_infer, XPU, ALL_LAYOUT, phi::ReshapeInferKernel, ALL_DTYPE) {} PD_REGISTER_GENERAL_KERNEL( reshape, XPU, ALL_LAYOUT, phi::ReshapeKernel, ALL_DTYPE) {} #endif