// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/memory/allocation/buffered_allocator.h" #include #include #include "paddle/fluid/memory/allocation/best_fit_allocator.h" #include "paddle/fluid/memory/allocation/cpu_allocator.h" #include "paddle/fluid/memory/allocation/locked_allocator.h" namespace paddle { namespace memory { namespace allocation { inline std::unique_ptr GetBufferedAllocator( Allocation *allocation, bool thread_safe) { std::unique_ptr allocator(new BestFitAllocator(allocation)); if (thread_safe) { allocator.reset(new LockedAllocator(std::move(allocator))); } return std::unique_ptr( new BufferedAllocator(std::move(allocator))); } TEST(buffered_allocator, thread_safety) { std::unique_ptr allocator(new CPUAllocator()); auto chunk = allocator->Allocate(1 << 20, allocator->kDefault); { auto buf_allocator = GetBufferedAllocator(chunk.get(), true); ASSERT_EQ(buf_allocator->IsAllocThreadSafe(), true); } { auto buf_allocator = GetBufferedAllocator(chunk.get(), false); ASSERT_EQ(buf_allocator->IsAllocThreadSafe(), false); } } class StubAllocation : public Allocation { public: using Allocation::Allocation; }; class StubAllocator : public Allocator { public: void ResetCounter() { construct_count_ = 0; destruct_count_ = 0; } size_t GetAllocCount() const { return construct_count_; } size_t GetFreeCount() const { return destruct_count_; } protected: void FreeImpl(Allocation *allocation) override { auto *alloc = dynamic_cast(allocation); PADDLE_ENFORCE_NOT_NULL(alloc); if (alloc->ptr()) delete[] static_cast(alloc->ptr()); ++destruct_count_; delete allocation; } Allocation *AllocateImpl(size_t size, Allocator::Attr attr) override { ++construct_count_; if (size == 0) { return new StubAllocation(nullptr, 0, platform::CPUPlace()); } else { return new StubAllocation(new uint8_t[size], size, platform::CPUPlace()); } } private: size_t construct_count_ = 0; size_t destruct_count_ = 0; }; constexpr size_t kZero = 0; constexpr size_t kOne = 1; constexpr size_t kTwo = 2; TEST(buffered_allocator, lazy_free) { std::unique_ptr stub_allocator(new StubAllocator()); auto *underlying_allocator = stub_allocator.get(); std::unique_ptr allocator( new BufferedAllocator(std::move(stub_allocator))); { underlying_allocator->ResetCounter(); auto x = allocator->Allocate(1025, allocator->kDefault); ASSERT_EQ(underlying_allocator->GetAllocCount(), kOne); ASSERT_EQ(underlying_allocator->GetFreeCount(), kZero); x = nullptr; ASSERT_EQ(underlying_allocator->GetFreeCount(), kZero); } { underlying_allocator->ResetCounter(); auto x = allocator->Allocate(900, allocator->kDefault); ASSERT_EQ(underlying_allocator->GetAllocCount(), kZero); ASSERT_EQ(underlying_allocator->GetFreeCount(), kZero); auto y = allocator->Allocate(2048, allocator->kDefault); ASSERT_EQ(underlying_allocator->GetAllocCount(), kOne); ASSERT_EQ(underlying_allocator->GetFreeCount(), kZero); x = nullptr; ASSERT_EQ(underlying_allocator->GetFreeCount(), kZero); y = nullptr; ASSERT_EQ(underlying_allocator->GetFreeCount(), kZero); } { underlying_allocator->ResetCounter(); allocator->ClearCache(); ASSERT_EQ(underlying_allocator->GetAllocCount(), kZero); ASSERT_EQ(underlying_allocator->GetFreeCount(), kTwo); } } TEST(buffered_allocator, garbage_collection) { std::unique_ptr cpu_allocator(new CPUAllocator()); auto chunk = cpu_allocator->Allocate(2048, cpu_allocator->kDefault); auto allocator = GetBufferedAllocator(chunk.get(), false); auto x1 = allocator->Allocate(1600, allocator->kDefault); auto x2 = allocator->Allocate(400, allocator->kDefault); x1 = nullptr; x2 = nullptr; auto x3 = allocator->Allocate(1600, allocator->kDefault); ASSERT_NE(x3, nullptr); ASSERT_NE(x3->ptr(), nullptr); } } // namespace allocation } // namespace memory } // namespace paddle