# Benchmark Machine: - Server - Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket - Laptop - DELL XPS15-9560-R1745: i7-7700HQ 8G 256GSSD - i5 MacBook Pro (Retina, 13-inch, Early 2015) - Desktop - i7-6700k System: CentOS release 6.3 (Final), Docker 1.12.1. PaddlePaddle: paddlepaddle/paddle:latest (for MKLML and MKL-DNN), paddlepaddle/paddle:latest-openblas (for OpenBLAS) - MKL-DNN tag v0.11 - MKLML 2018.0.1.20171007 - OpenBLAS v0.2.20 (TODO: will rerun after 0.11.0) On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively. ## Benchmark Model ### Server Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz Input image size - 3 * 224 * 224, Time: images/second - VGG-19 | BatchSize | 64 | 128 | 256 | |--------------|-------| -----| --------| | OpenBLAS | 7.80 | 9.00 | 10.80 | | MKLML | 12.12 | 13.70 | 16.18 | | MKL-DNN | 28.46 | 29.83 | 30.44 | chart on batch size 128 TBD - ResNet-50 | BatchSize | 64 | 128 | 256 | |--------------|-------| ------| -------| | OpenBLAS | 25.22 | 25.68 | 27.12 | | MKLML | 32.52 | 31.89 | 33.12 | | MKL-DNN | 81.69 | 82.35 | 84.08 | chart on batch size 128 TBD - GoogLeNet | BatchSize | 64 | 128 | 256 | |--------------|-------| ------| -------| | OpenBLAS | 88.58 | 92.15 | 101.4 | | MKLML | 111.5 | 119.8 | 131.2 | | MKL-DNN | 238.0 | 259.6 | 276.6 | chart on batch size 128 TBD ### Laptop TBD ### Desktop TBD