# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid import unittest import os import tempfile class TestCheckpoint(unittest.TestCase): def setUp(self): self.dirname = tempfile.mktemp() self.max_num_checkpoints = 3 self.epoch_interval = 1 self.step_interval = 1 self.trainer_id = 0 self.chief = self.trainer_id == 0 self.place = fluid.CPUPlace() self.epoch_id = 100 self.step_id = 20 def test_checkpoint(self): self.save_checkpoint() serial = fluid.io.get_latest_checkpoint_serial(self.dirname) self.assertTrue(serial >= 0) trainer_args = ["epoch_id", "step_id"] epoch_id, step_id = fluid.io.load_trainer_args( self.dirname, serial, self.trainer_id, trainer_args) self.assertEqual(self.step_id, int(step_id)) self.assertEqual(self.epoch_id, int(epoch_id)) program = fluid.Program() with fluid.program_guard(program): exe = fluid.Executor(self.place) fluid.io.load_checkpoint(exe, self.dirname, serial, program) fluid.io.clean_checkpoint(self.dirname, delete_dir=True) self.assertFalse(os.path.isdir(self.dirname)) def save_checkpoint(self): config = fluid.CheckpointConfig(self.dirname, self.max_num_checkpoints, self.epoch_interval, self.step_interval) trainer_args = {} trainer_args["epoch_id"] = self.epoch_id trainer_args["step_id"] = self.step_id program = fluid.Program() with fluid.program_guard(program): program.global_block().create_var( name="scale_0", psersistable=True, dtype="float32", shape=[32, 32]) exe = fluid.Executor(self.place) for i in xrange(10): fluid.io.save_checkpoint( exe, config.checkpoint_dir, self.trainer_id, self.chief, trainer_args, program, config.max_num_checkpoints) if __name__ == '__main__': unittest.main()