/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/plugin/qkv_to_context_plugin.h" namespace paddle { namespace inference { namespace tensorrt { class MultiheadMatMulOpConverter : public OpConverter { public: void operator()(const framework::proto::OpDesc& op, const framework::Scope& scope, bool test_mode) override { VLOG(3) << "convert a fluid multihead_mamul op to a corresponding tensorrt " "network structure"; framework::OpDesc op_desc(op, nullptr); // Declare inputs auto* input = engine_->GetITensor(op_desc.Input("Input").front()); auto input_dims = input->getDimensions(); bool bias_qk_attr = (op_desc.Inputs().find("BiasQK") == op_desc.Inputs().end()) ? false : true; // fc weights and fc bias auto weight_name = op_desc.Input("W").front(); auto bias_name = op_desc.Input("Bias").front(); auto* weight_v = scope.FindVar(weight_name); auto* weight_t = weight_v->GetMutable(); auto* bias_v = scope.FindVar(bias_name); auto* bias_t = bias_v->GetMutable(); float* weight_data = nullptr; bool qkv2context_plugin_int8 = op_desc.HasAttr("qkv2context_plugin_int8"); float in_scale = 0.; if (op_desc.HasAttr("Input_scale")) { in_scale = PADDLE_GET_CONST(float, op_desc.GetAttr("Input_scale")); engine_->SetTensorDynamicRange(input, in_scale); } weight_data = const_cast(static_cast( engine_->GetFp32TrtWeight(weight_name, *weight_t).get().values)); float* bias_data = const_cast(static_cast( engine_->GetFp32TrtWeight(bias_name, *bias_t).get().values)); std::vector weight_data_tmp; weight_data_tmp.reserve(weight_t->numel()); memcpy( weight_data_tmp.data(), weight_data, weight_t->numel() * sizeof(float)); // (hidden_in, 3, hidden_out) const auto& weight_dims = weight_t->dims(); int hidden_in = weight_dims[0]; // channels_in int three = weight_dims[1]; // channels_out int hidden_out = weight_dims[2]; // channels_out int m = hidden_in; int n = three * hidden_out; auto tranpose_weight = [](const float* src, float* dst, int m, int n) { for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { dst[j * m + i] = src[i * n + j]; } } }; tranpose_weight(weight_data_tmp.data(), weight_data, m, n); int head_number = PADDLE_GET_CONST(int, op_desc.GetAttr("head_number")); nvinfer1::ILayer* layer = nullptr; auto output_name = op_desc.Output("Out")[0]; bool flag_varseqlen = engine_->use_varseqlen() && engine_->tensorrt_transformer_posid() != "" && engine_->tensorrt_transformer_maskid() != ""; if (engine_->with_dynamic_shape()) { if (flag_varseqlen) { if (engine_->precision() == AnalysisConfig::Precision::kFloat32) { PADDLE_THROW(platform::errors::Fatal( "use use_varseqlen must be int8 or half, not float32.")); } nvinfer1::Weights weight{nvinfer1::DataType::kFLOAT, static_cast(weight_data), static_cast(weight_t->numel())}; nvinfer1::Weights bias{nvinfer1::DataType::kFLOAT, static_cast(bias_data), static_cast(bias_t->numel())}; auto max_seqlen_tensor = engine_->GetITensor("max_seqlen_tensor"); auto pos_id_tensor = engine_->GetITensor("pos_id"); if (engine_->with_interleaved()) { VLOG(4) << "fused multihead_matmul op: use_varseqlen and " "with_interleaved"; if (!op_desc.HasAttr("Input_scale")) { PADDLE_THROW( platform::errors::Fatal("use with_interleaved must be int8.")); } nvinfer1::ILayer* fc_layer = nullptr; float dp_probs = 1.0 / 127.0; nvinfer1::DimsHW nv_ksize(1, 1); fc_layer = TRT_ENGINE_ADD_LAYER( engine_, Convolution, *input, n, nv_ksize, weight, bias); fc_layer->setName( ("Multihead: Convolution/FullyConnected: (Output: " + output_name + ")") .c_str()); PADDLE_ENFORCE_EQ( op_desc.HasAttr("fc_out_threshold"), true, platform::errors::InvalidArgument( "must have out_threshold in multihead layers in int8 mode")); float out_scale = PADDLE_GET_CONST(float, op_desc.GetAttr("fc_out_threshold")); engine_->SetTensorDynamicRange(fc_layer->getOutput(0), out_scale); if (qkv2context_plugin_int8) { dp_probs = PADDLE_GET_CONST(float, op_desc.GetAttr("dp_probs")) / 127.0; } auto creator = GetPluginRegistry()->getPluginCreator( "CustomQKVToContextPluginDynamic", "3"); assert(creator != nullptr); std::vector fields{ {"hidden_size", &hidden_out, nvinfer1::PluginFieldType::kINT32, 1}, {"num_heads", &head_number, nvinfer1::PluginFieldType::kINT32, 1}}; if (qkv2context_plugin_int8) { fields.push_back({"dq_probs", &dp_probs, nvinfer1::PluginFieldType::kFLOAT32, 1}); } nvinfer1::PluginFieldCollection* plugin_collection = static_cast(malloc( sizeof(*plugin_collection) + fields.size() * sizeof(nvinfer1::PluginField))); // remember to free plugin_collection->nbFields = static_cast(fields.size()); plugin_collection->fields = fields.data(); auto plugin = creator->createPlugin("CustomQKVToContextPluginDynamic", plugin_collection); free(plugin_collection); std::vector plugin_inputs; plugin_inputs.emplace_back(fc_layer->getOutput(0)); plugin_inputs.emplace_back(pos_id_tensor); plugin_inputs.emplace_back( max_seqlen_tensor); // max_seqlen, eval_placeholder_3 auto plugin_layer = engine_->network()->addPluginV2( plugin_inputs.data(), plugin_inputs.size(), *plugin); layer = plugin_layer; } else { int head_size = hidden_out / head_number; // [3, head_number, head_size, hidden_in] -> [head_number, 3, // head_size, // hidden_in] auto transpose_weight_v2 = [](const float* src, float* dst, int three, int head_number, int head_size, int hidden_in) { const int HH = head_size * hidden_in; for (int i = 0; i < three; ++i) { for (int n = 0; n < head_number; ++n) { for (int hh = 0; hh < HH; ++hh) { dst[n * three * HH + i * HH + hh] = src[i * head_number * HH + n * HH + hh]; } } } }; // [3, head_number, head_size] -> [head_number, 3, head_size] auto transpose_bias_v2 = [](const float* src, float* dst, int N, int H) { for (int i = 0; i < 3; ++i) { for (int n = 0; n < N; ++n) { for (int h = 0; h < H; ++h) { dst[n * 3 * H + i * H + h] = src[i * N * H + n * H + h]; } } } }; memcpy(weight_data_tmp.data(), weight_data, weight_t->numel() * sizeof(float)); transpose_weight_v2(weight_data_tmp.data(), weight_data, three, head_number, head_size, hidden_in); std::vector bias_data_tmp; bias_data_tmp.reserve(bias_t->numel()); memcpy( bias_data_tmp.data(), bias_data, bias_t->numel() * sizeof(float)); transpose_bias_v2( bias_data_tmp.data(), bias_data, head_number, head_size); nvinfer1::ILayer* fc_layer = nullptr; float dp_probs = 1.0 / 127.0; if (op_desc.HasAttr("Input_scale")) { nvinfer1::DimsHW nv_ksize(1, 1); fc_layer = TRT_ENGINE_ADD_LAYER( engine_, Convolution, *input, n, nv_ksize, weight, bias); } else { fc_layer = TRT_ENGINE_ADD_LAYER( engine_, FullyConnected, *input, n, weight, bias); } if (op_desc.HasAttr("fc_out_threshold")) { PADDLE_ENFORCE_EQ(op_desc.HasAttr("fc_out_threshold"), true, platform::errors::InvalidArgument( "must have out threshold in multihead layers " "in int8 mode")); float out_scale = PADDLE_GET_CONST(float, op_desc.GetAttr("fc_out_threshold")); engine_->SetTensorDynamicRange(fc_layer->getOutput(0), out_scale); if (qkv2context_plugin_int8) { dp_probs = PADDLE_GET_CONST(float, op_desc.GetAttr("dp_probs")) / 127.0; } } auto creator = GetPluginRegistry()->getPluginCreator( "CustomQKVToContextPluginDynamic", "2"); assert(creator != nullptr); int type = static_cast(nvinfer1::DataType::kHALF); if (qkv2context_plugin_int8 && (engine_->precision() == AnalysisConfig::Precision::kInt8)) { type = static_cast(nvinfer1::DataType::kINT8); } bool has_mask = true; int var_seqlen = 1; std::vector fields{ {"type_id", &type, nvinfer1::PluginFieldType::kINT32, 1}, {"hidden_size", &hidden_out, nvinfer1::PluginFieldType::kINT32, 1}, {"num_heads", &head_number, nvinfer1::PluginFieldType::kINT32, 1}, {"has_mask", &has_mask, nvinfer1::PluginFieldType::kINT32, 1}, {"var_seqlen", &var_seqlen, nvinfer1::PluginFieldType::kINT32, 1}}; if (qkv2context_plugin_int8) { fields.push_back({"dq_probs", &dp_probs, nvinfer1::PluginFieldType::kFLOAT32, 1}); } nvinfer1::PluginFieldCollection* plugin_collection = static_cast(malloc( sizeof(*plugin_collection) + fields.size() * sizeof(nvinfer1::PluginField))); // remember to free plugin_collection->nbFields = static_cast(fields.size()); plugin_collection->fields = fields.data(); auto plugin = creator->createPlugin("CustomQKVToContextPluginDynamic", plugin_collection); free(plugin_collection); std::vector plugin_inputs; plugin_inputs.emplace_back(fc_layer->getOutput(0)); plugin_inputs.emplace_back(engine_->GetITensor("qkv_plugin_mask")); plugin_inputs.emplace_back(pos_id_tensor); plugin_inputs.emplace_back( max_seqlen_tensor); // max_seqlen, eval_placeholder_3 auto plugin_layer = engine_->network()->addPluginV2( plugin_inputs.data(), plugin_inputs.size(), *plugin); layer = plugin_layer; } } else { if (input_dims.d[1] <= 384 && !bias_qk_attr && engine_->precision() != AnalysisConfig::Precision::kFloat32) { /* * input_dims.d[0]: batch(-1) * input_dims.d[1]: length:256 * input_dims.d[2]: hidden_size:768 input |[b,256,768] | shuffle weight bias |[b,256,768,1,1] | | |_____________________|_________| | fc |[b,256,2304,1,1] | shuffle mask(fake) pos max_length |[b*256,2304,1,1] | | | | | | | |_______________________|_________|________| | MHA |[b*256,768] | shuffle |[b, 256, 768] | out */ nvinfer1::Weights weight{nvinfer1::DataType::kFLOAT, static_cast(weight_data), static_cast(weight_t->numel())}; nvinfer1::Weights bias{nvinfer1::DataType::kFLOAT, static_cast(bias_data), static_cast(bias_t->numel())}; /*** transpose the weight and bias ***/ int head_size = hidden_out / head_number; // [3, head_number, head_size, hidden_in] -> [head_number, 3, // head_size, hidden_in] auto transpose_weight_v2 = [](const float* src, float* dst, int three, int head_number, int head_size, int hidden_in) { const int HH = head_size * hidden_in; for (int i = 0; i < three; ++i) { for (int n = 0; n < head_number; ++n) { for (int hh = 0; hh < HH; ++hh) { dst[n * three * HH + i * HH + hh] = src[i * head_number * HH + n * HH + hh]; } } } }; // [3, head_number, head_size] -> [head_number, 3, head_size] auto transpose_bias_v2 = [](const float* src, float* dst, int N, int H) { for (int i = 0; i < 3; ++i) { for (int n = 0; n < N; ++n) { for (int h = 0; h < H; ++h) { dst[n * 3 * H + i * H + h] = src[i * N * H + n * H + h]; } } } }; memcpy(weight_data_tmp.data(), weight_data, weight_t->numel() * sizeof(float)); transpose_weight_v2(weight_data_tmp.data(), weight_data, three, head_number, head_size, hidden_in); std::vector bias_data_tmp; bias_data_tmp.reserve(bias_t->numel()); memcpy( bias_data_tmp.data(), bias_data, bias_t->numel() * sizeof(float)); transpose_bias_v2( bias_data_tmp.data(), bias_data, head_number, head_size); // add shuffle for FullyConnected layer std::vector reshape_before_fc_shape_tensor; nvinfer1::ITensor* input_shape_tensor = Shape(input); for (int i = 0; i < 5; i++) { reshape_before_fc_shape_tensor.push_back(Add1DConstantLayer(1)); } for (int i = 0; i < 3; i++) { reshape_before_fc_shape_tensor[i] = GetEleTensorOfShape(input_shape_tensor, i); } auto* reshape_before_fc_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input); reshape_before_fc_layer->setInput( 1, *Concat(reshape_before_fc_shape_tensor)); reshape_before_fc_layer->setName( ("shuffle_before_fc_multihead_matmul(Output: " + output_name + ")") .c_str()); // add fc layer nvinfer1::ILayer* fc_layer = nullptr; fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *reshape_before_fc_layer->getOutput(0), n, weight, bias); // add shuffle for CustomQKVToContextPluginDynamic layer auto* reshape_after_fc_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *fc_layer->getOutput(0)); std::vector mha_input_tensor_shape; mha_input_tensor_shape.push_back(Add1DConstantLayer(-1)); mha_input_tensor_shape.push_back( Add1DConstantLayer(hidden_out * 3)); // Q,K,V mha_input_tensor_shape.push_back(Add1DConstantLayer(1)); mha_input_tensor_shape.push_back(Add1DConstantLayer(1)); reshape_after_fc_layer->setInput(1, *Concat(mha_input_tensor_shape)); reshape_after_fc_layer->setName( ("shuffle_after_fc_multihead_matmul(Output: " + output_name + ")") .c_str()); // add mha_plugin auto creator = GetPluginRegistry()->getPluginCreator( "CustomQKVToContextPluginDynamic", "2"); assert(creator != nullptr); // set the attributes of mha_plugin int type = static_cast(nvinfer1::DataType::kHALF); int var_seqlen = 1; bool has_mask = true; std::vector fields{ {"hidden_size", &hidden_out, nvinfer1::PluginFieldType::kINT32, 1}, {"num_heads", &head_number, nvinfer1::PluginFieldType::kINT32, 1}, {"type_id", &type, nvinfer1::PluginFieldType::kINT32, 1}, {"has_mask", &has_mask, nvinfer1::PluginFieldType::kINT32, 1}, {"var_seqlen", &var_seqlen, nvinfer1::PluginFieldType::kINT32, 1}}; nvinfer1::PluginFieldCollection* plugin_collection = static_cast(malloc( sizeof(*plugin_collection) + fields.size() * sizeof(nvinfer1::PluginField))); // remember to free plugin_collection->nbFields = static_cast(fields.size()); plugin_collection->fields = fields.data(); auto plugin = creator->createPlugin("CustomQKVToContextPluginDynamic", plugin_collection); free(plugin_collection); // set inputs std::vector plugin_inputs; // input_0 for plugin plugin_inputs.emplace_back(reshape_after_fc_layer->getOutput(0)); // input_1(fake) for plugin std::vector mask = {1}; nvinfer1::ITensor* mask_tensor = Add1DConstantLayer(mask); plugin_inputs.emplace_back(mask_tensor); // input_2 for plugin std::vector pos_id = {0}; int max_batch = 512; int length = (input_dims.d[1] == -1) ? 1 : input_dims.d[1]; for (int i = 1; i < max_batch; i++) { pos_id.push_back(i * length); } nvinfer1::ITensor* fake_pos_id_tensor = Add1DConstantLayer(pos_id); nvinfer1::ITensor* length_tensor = GetEleTensorOfShape(input_shape_tensor, 1); auto pos_id_layer = TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *fake_pos_id_tensor, *length_tensor, nvinfer1::ElementWiseOperation::kPROD); // size = batch + 1; nvinfer1::ITensor* batch_tensor = GetEleTensorOfShape(input_shape_tensor, 0); std::vector const_data = {1}; nvinfer1::ITensor* const_tensor = Add1DConstantLayer(const_data); auto size_layer = TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *batch_tensor, *const_tensor, nvinfer1::ElementWiseOperation::kSUM); // get size(batch + 1) data from pos_id_tensor nvinfer1::Dims start; nvinfer1::Dims stride; nvinfer1::Dims size; start.nbDims = 1; stride.nbDims = 1; size.nbDims = 1; start.d[0] = 0; stride.d[0] = 1; size.d[0] = 1; nvinfer1::ITensor* pos_id_tensor = (input_dims.d[1] == -1) ? pos_id_layer->getOutput(0) : fake_pos_id_tensor; auto* slice_pos_layer = TRT_ENGINE_ADD_LAYER( engine_, Slice, *pos_id_tensor, start, size, stride); slice_pos_layer->setInput(2, *size_layer->getOutput(0)); plugin_inputs.emplace_back(slice_pos_layer->getOutput(0)); // input_3 for plugin int max_length = (input_dims.d[1] == -1) ? 512 : input_dims.d[1]; std::vector data(max_length, 1); nvinfer1::ITensor* fake_max_seqlen_tensor = Add1DConstantLayer(data); auto* slice_max_layer = TRT_ENGINE_ADD_LAYER( engine_, Slice, *fake_max_seqlen_tensor, start, size, stride); slice_max_layer->setInput(2, *length_tensor); nvinfer1::ITensor* max_seqlen_tensor = (input_dims.d[1] == -1) ? slice_max_layer->getOutput(0) : fake_max_seqlen_tensor; plugin_inputs.emplace_back(max_seqlen_tensor); // plugin_layer auto plugin_layer = engine_->network()->addPluginV2( plugin_inputs.data(), plugin_inputs.size(), *plugin); // add shuffle auto* reshape_after_mha_layer = TRT_ENGINE_ADD_LAYER( engine_, Shuffle, *plugin_layer->getOutput(0)); std::vector reshape_tensor; reshape_tensor.push_back(batch_tensor); reshape_tensor.push_back(length_tensor); reshape_tensor.push_back(Add1DConstantLayer(-1)); reshape_after_mha_layer->setInput(1, *Concat(reshape_tensor)); reshape_after_mha_layer->setName( ("shuffle_last_multihead_matmul(Output: " + output_name + ")") .c_str()); // return layer = reshape_after_mha_layer; } else { PADDLE_ENFORCE_EQ( input->getDimensions().nbDims, 3, platform::errors::InvalidArgument( "The Input dim of the MultiheadMatMul should be 3, " "but it's (%d) now.", input->getDimensions().nbDims)); // transpose weight_data from m * n to n * m TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT, static_cast(weight_data), static_cast(weight_t->numel())}; weight.dims.assign({n, m}); TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT, static_cast(bias_data), static_cast(bias_t->numel())}; // add shuffle before fc std::vector reshape_before_fc_shape_tensor; nvinfer1::ITensor* input_shape_tensor = Shape(input); for (int i = 0; i < 5; i++) { reshape_before_fc_shape_tensor.push_back(Add1DConstantLayer(1)); } for (int i = 0; i < 3; i++) { reshape_before_fc_shape_tensor[i] = GetEleTensorOfShape(input_shape_tensor, i); } auto* reshape_before_fc_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input); if (op_desc.HasAttr("Input_scale")) { engine_->SetTensorDynamicRange( reshape_before_fc_layer->getOutput(0), in_scale); } reshape_before_fc_layer->setInput( 1, *Concat(reshape_before_fc_shape_tensor)); reshape_before_fc_layer->setName( ("shuffle_before_multihead_mamul(Output: " + output_name + ")") .c_str()); // add layer fc nvinfer1::ILayer* fc_layer = nullptr; if (op_desc.HasAttr("Input_scale")) { nvinfer1::DimsHW nv_ksize(1, 1); fc_layer = TRT_ENGINE_ADD_LAYER(engine_, Convolution, *reshape_before_fc_layer->getOutput(0), n, nv_ksize, weight.get(), bias.get()); } else { fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *reshape_before_fc_layer->getOutput(0), n, weight.get(), bias.get()); } if (op_desc.HasAttr("fc_out_threshold")) { PADDLE_ENFORCE_EQ(op_desc.HasAttr("fc_out_threshold"), true, platform::errors::InvalidArgument( "must have out threshold in multihead layers " "in int8 mode")); float out_scale = PADDLE_GET_CONST(float, op_desc.GetAttr("fc_out_threshold")); engine_->SetTensorDynamicRange(fc_layer->getOutput(0), out_scale); } fc_layer->setName( ("multihead_mamul_fc(Output: " + output_name + ")").c_str()); // no need to add shuffle after fc, just change it in // QkvToContextPluginDynamic // add qkv to context int head_size = hidden_out / head_number; float scale = PADDLE_GET_CONST(float, op_desc.GetAttr("alpha")); std::vector plugin_inputs; plugin_inputs.push_back(fc_layer->getOutput(0)); auto inputs = op_desc.Inputs(); bool hasBiasQK = (inputs.find("BiasQK") == inputs.end()) ? false : true; nvinfer1::ITensor* input_bias_qk = nullptr; if (hasBiasQK) { input_bias_qk = engine_->GetITensor(op_desc.Input("BiasQK").front()); } else { // fake input will be updated in qkv_plugin input_bias_qk = fc_layer->getOutput(0); } plugin_inputs.push_back(input_bias_qk); bool with_fp16 = engine_->WithFp16() && !engine_->disable_trt_plugin_fp16(); if (engine_->precision() == AnalysisConfig::Precision::kInt8) { with_fp16 = true; } plugin::DynamicPluginTensorRT* plugin = new plugin::QkvToContextPluginDynamic( hidden_in, head_number, head_size, scale, with_fp16); layer = engine_->AddDynamicPlugin(plugin_inputs.data(), 2, plugin); } } } else { PADDLE_THROW(platform::errors::Fatal( "You are running the Ernie(Bert) model in static shape mode, which " "is not supported for the time being.\n" "You can use the config.SetTRTDynamicShapeInfo(...) interface to set " "the shape information to run the dynamic shape mode.")); } RreplenishLayerAndOutput( layer, "multihead_matmul", {output_name}, test_mode); } }; } // namespace tensorrt } // namespace inference } // namespace paddle REGISTER_TRT_OP_CONVERTER(multihead_matmul, MultiheadMatMulOpConverter);