// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/lite/tensor_utils.h" #include #include #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/inference/lite/engine.h" #include "paddle/fluid/memory/allocation/allocator.h" namespace paddle { namespace inference { namespace lite { namespace utils { using paddle::lite_api::TargetType; using paddle::lite_api::PrecisionType; using paddle::lite_api::DataLayoutType; template void SetLoD(DstLoD* dst, const SrcLoD& src) { dst->reserve(src.size()); dst->clear(); for (auto&& v : src) { dst->emplace_back(v); } } template void SetLoD( paddle::lite::LoD* dst, const framework::LoD& src); template void SetLoD( framework::LoD* dst, const paddle::lite::LoD& src); platform::Place GetNativePlace(const TargetType& type, int id = 0) { switch (type) { case TargetType::kHost: case TargetType::kX86: return platform::CPUPlace(); case TargetType::kCUDA: return platform::CUDAPlace(id); case TargetType::kXPU: LOG(ERROR) << "No corresponding device for XPU yet."; return platform::Place(); default: PADDLE_THROW( platform::errors::Unavailable("Unsupported target type. Now only " "supports Host, x86, CUDA target.")); return platform::Place(); } } TargetType GetLiteTargetType(const platform::Place& place) { if (platform::is_cpu_place(place)) { return TargetType::kHost; } return TargetType::kCUDA; } PrecisionType GetLitePrecisionType(framework::proto::VarType::Type type) { switch (type) { case framework::proto::VarType_Type_FP32: return PrecisionType::kFloat; case framework::proto::VarType_Type_INT8: return PrecisionType::kInt8; case framework::proto::VarType_Type_INT32: return PrecisionType::kInt32; case framework::proto::VarType_Type_INT64: return PrecisionType::kInt64; default: PADDLE_THROW(platform::errors::Unimplemented( "Unsupported precision type. Now only supports FP32, INT8, INT32 and " "INT64.")); return PrecisionType::kUnk; } } framework::proto::VarType::Type GetNativePrecisionType( const PrecisionType& type) { switch (type) { case PrecisionType::kFloat: return framework::proto::VarType_Type_FP32; case PrecisionType::kInt8: return framework::proto::VarType_Type_INT8; case PrecisionType::kInt32: return framework::proto::VarType_Type_INT32; case PrecisionType::kInt64: return framework::proto::VarType_Type_INT64; default: PADDLE_THROW(platform::errors::Unimplemented( "Unsupported precision type. Now only supports FP32, INT8, INT32 and " "INT64.")); return static_cast(-1); } } framework::DataLayout GetNativeLayoutType(const DataLayoutType& type) { switch (type) { case DataLayoutType::kNCHW: return framework::DataLayout::kNCHW; default: PADDLE_THROW(platform::errors::Unimplemented( "Unsupported layout type. Now only supports NCHW.")); return static_cast(-1); } } void MemoryCopyAsync(const platform::Place& dst_place, void* dst_data, const platform::Place& src_place, const void* src_data, const size_t size, const platform::DeviceContext& ctx) { const platform::CPUPlace cpu_place; if (platform::is_cpu_place(dst_place) && platform::is_cpu_place(src_place)) { memory::Copy(cpu_place, dst_data, cpu_place, src_data, size); } else { #ifdef PADDLE_WITH_CUDA if (platform::is_cpu_place(dst_place) && platform::is_gpu_place(src_place)) { PADDLE_THROW(platform::errors::Unimplemented( "Lite::MemoryCopy GPU->CPU is not yet implemented.")); } else if (platform::is_gpu_place(dst_place) && platform::is_cpu_place(src_place)) { PADDLE_THROW(platform::errors::Unimplemented( "Lite::MemoryCopy CPU->GPU is not yet implemented.")); } else if (platform::is_gpu_place(dst_place) && platform::is_gpu_place(src_place)) { auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place); memory::Copy( gpu_place, dst_data, gpu_place, src_data, size, static_cast(ctx).stream()); } #else PADDLE_THROW(platform::errors::PreconditionNotMet( "You must define PADDLE_WITH_CUDA for using CUDAPlace.")); #endif } } void InitDstTensor(paddle::lite::Tensor* dst, const framework::LoDTensor& src) { // Currently, Lite needs to explicitly specify the target type of // the input tensor. constexpr int empty_size = 0; dst->mutable_data(GetLiteTargetType(src.place()), empty_size); dst->set_precision(GetLitePrecisionType(src.type())); SetLoD(dst->mutable_lod(), src.lod()); } void InitDstTensor(framework::LoDTensor* dst, const paddle::lite::Tensor& src) { constexpr framework::proto::VarType::Type dtype = framework::proto::VarType_Type_FP32; dst->mutable_data(inference::lite::utils::GetNativePlace(src.target()), dtype); SetLoD(dst->mutable_lod(), src.lod()); } template <> void TensorCopyAsync(paddle::lite::Tensor* dst, const framework::LoDTensor& src, const platform::DeviceContext& ctx) { InitDstTensor(dst, src); const platform::Place& src_place = src.place(); const platform::Place& dst_place = GetNativePlace(dst->target()); const size_t bytes = static_cast(src.numel()) * framework::SizeOfType(src.type()); dst->Resize(framework::vectorize(src.dims())); const void* src_data = src.data(); void* dst_data = dst->mutable_data(bytes); VLOG(3) << "[CopyAsync fluid -> lite] Bytes = " << bytes << ", src = " << &src << ", dst = " << dst << ", src_type = " << src.type(); MemoryCopyAsync(dst_place, dst_data, src_place, src_data, bytes, ctx); VLOG(3) << "[Lite memory size] Bytes = " << dst->memory_size(); } template <> void TensorCopyAsync(framework::LoDTensor* dst, const paddle::lite::Tensor& src, const platform::DeviceContext& ctx) { dst->Resize(paddle::framework::make_ddim(src.dims().Vectorize())); InitDstTensor(dst, src); const platform::Place& src_place = GetNativePlace(src.target()); const platform::Place& dst_place = dst->place(); const size_t bytes = static_cast(src.numel()) * framework::SizeOfType(dst->type()); const void* src_data = src.raw_data(); // When Lite is ready, the source type needs to be modified here. void* dst_data = dst->mutable_data(dst_place, dst->type()); VLOG(3) << "[CopyAsync lite -> fluid] Bytes = " << bytes << ", src = " << &src << ", dst = " << dst << ", src_type = " << dst->type(); MemoryCopyAsync(dst_place, dst_data, src_place, src_data, bytes, ctx); VLOG(3) << "[Lite memory size] Bytes = " << src.memory_size(); } template <> void TensorDataShare(paddle::lite::Tensor* dst, framework::LoDTensor* src) { const size_t bytes = static_cast(src->numel()) * framework::SizeOfType(src->type()); auto buf = std::make_shared(paddle::lite::Buffer( src->data(), GetLiteTargetType(src->place()), src->memory_size())); dst->Resize(framework::vectorize(src->dims())); dst->set_precision(GetLitePrecisionType(src->type())); SetLoD(dst->mutable_lod(), src->lod()); dst->ResetBuffer(buf, bytes); } template <> void TensorDataShare(framework::LoDTensor* dst, paddle::lite::Tensor* src) { constexpr framework::proto::VarType::Type dtype = framework::proto::VarType_Type_FP32; void* src_raw_data = src->raw_data(); std::shared_ptr holder( new memory::allocation::Allocation(src_raw_data, src->memory_size(), GetNativePlace(src->target()))); dst->Resize(paddle::framework::make_ddim(src->dims().Vectorize())); SetLoD(dst->mutable_lod(), src->lod()); dst->ResetHolderWithType(holder, dtype); } } // namespace utils } // namespace lite } // namespace inference } // namespace paddle