# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import unittest import numpy as np import paddle import paddle.fluid as fluid sys.path.append("../") from op_test import OpTest class TestSequenceReverseBase(OpTest): def initParameters(self): pass def setUp(self): self.size = (10, 3, 4) self.lod = [2, 3, 5] self.dtype = 'float32' self.initParameters() self.op_type = 'sequence_reverse' self.x = np.random.random(self.size).astype(self.dtype) self.y = self.get_output() self.inputs = { 'X': ( self.x, [ self.lod, ], ), } self.outputs = { 'Y': ( self.y, [ self.lod, ], ), } def get_output(self): tmp_x = np.reshape(self.x, newshape=[self.x.shape[0], -1]) tmp_y = np.ndarray(tmp_x.shape).astype(self.dtype) prev_idx = 0 for cur_len in self.lod: idx_range = range(prev_idx, prev_idx + cur_len) tmp_y[idx_range, :] = np.flip(tmp_x[idx_range, :], 0) prev_idx += cur_len return np.reshape(tmp_y, newshape=self.x.shape).astype(self.dtype) def test_output(self): self.check_output(0, check_dygraph=False) def test_grad(self): self.check_grad(['X'], 'Y', check_dygraph=False) class TestSequenceReserve1(TestSequenceReverseBase): def initParameters(self): self.size = (12, 10) self.lod = [4, 5, 3] class TestSequenceReverse2(TestSequenceReverseBase): def initParameters(self): self.size = (12, 10) self.lod = [12] class TestSequenceReverse3(TestSequenceReverseBase): def initParameters(self): self.size = (12, 10) self.lod = [3, 0, 6, 3] class TestSequenceReverse4(TestSequenceReverseBase): def initParameters(self): self.size = (12, 10) self.lod = [0, 2, 10, 0] class TestSequenceReverseOpError(unittest.TestCase): def test_error(self): def test_variable(): # the input type must be Variable x_data = np.random.random((2, 4)).astype("float32") fluid.layers.sequence_reverse(x=x_data) self.assertRaises(TypeError, test_variable) def test_dtype(): # dtype must be 'float32', 'float64', 'int8', 'int32', 'int64' x2_data = paddle.static.data( name='x2', shape=[-1, 4], dtype='float16' ) fluid.layers.sequence_reverse(x=x2_data) self.assertRaises(TypeError, test_dtype) if __name__ == '__main__': unittest.main()