# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest import paddle from paddle.fluid.framework import _test_eager_guard np.random.seed(10) def logit(x, eps): x_min = np.minimum(x, 1. - eps) x_max = np.maximum(x_min, eps) return np.log(x_max / (1. - x_max)) def logit_grad(x, eps=1e-8): tmp_x = np.select([x < eps, x > (1. - eps)], [x * 0., x * 0.], default=-1.0) x_1 = 1. - x _x = np.select([tmp_x == -1.0], [np.reciprocal(x * x_1)], default=0.0) dout = np.full_like(x, fill_value=1. / _x.size) dx = dout * _x return dx class TestLogitOp(OpTest): def setUp(self): self.op_type = 'logit' self.python_api = paddle.logit self.dtype = np.float64 self.shape = [120] self.eps = 1e-8 self.set_attrs() x = np.random.uniform(-1., 1., self.shape).astype(self.dtype) out = logit(x, self.eps) self.x_grad = logit_grad(x, self.eps) self.inputs = {'X': x} self.outputs = {'Out': out} self.attrs = {'eps': self.eps} def set_attrs(self): pass def test_check_output(self): self.check_output(check_eager=True) def test_check_grad(self): self.check_grad(['X'], ['Out'], user_defined_grads=[self.x_grad], check_eager=True) class TestLogitShape(TestLogitOp): def set_attrs(self): self.shape = [2, 60] class TestLogitEps(TestLogitOp): def set_attrs(self): self.eps = 1e-8 class TestLogitAPI(unittest.TestCase): def setUp(self): self.x_shape = [120] self.x = np.random.uniform(0., 1., self.x_shape).astype(np.float32) self.place = paddle.CUDAPlace(0) \ if paddle.fluid.core.is_compiled_with_cuda() \ else paddle.CPUPlace() def check_api(self, eps=1e-8): ref_out = logit(self.x, eps) # test static api with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data(name='x', shape=self.x_shape) y = paddle.logit(x, eps) exe = paddle.static.Executor(self.place) out = exe.run(feed={'x': self.x}, fetch_list=[y]) np.testing.assert_allclose(out[0], ref_out, rtol=1e-05) # test dygrapg api paddle.disable_static() x = paddle.to_tensor(self.x) y = paddle.logit(x, 1e-8) np.testing.assert_allclose(y.numpy(), ref_out, rtol=1e-05) paddle.enable_static() def test_check_api(self): paddle.enable_static() for eps in [1e-6, 0.0]: self.check_api(eps) def test_errors(self): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data(name='X1', shape=[100], dtype='int32') self.assertRaises(TypeError, paddle.logit, x) x = paddle.fluid.data(name='X2', shape=[100], dtype='float32') self.assertRaises(TypeError, paddle.logit, x, dtype='int32') def test_api_eager_dygraph(self): with _test_eager_guard(): self.test_check_api() self.test_errors() if __name__ == "__main__": unittest.main()