#!/bin/env python2 # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from py_paddle import swig_paddle, DataProviderConverter from common_utils import * from paddle.trainer.config_parser import parse_config try: import cPickle as pickle except ImportError: import pickle import sys if __name__ == '__main__': model_path = sys.argv[1] swig_paddle.initPaddle('--use_gpu=0') conf = parse_config("trainer_config.py", "is_predict=1") network = swig_paddle.GradientMachine.createFromConfigProto( conf.model_config) assert isinstance(network, swig_paddle.GradientMachine) network.loadParameters(model_path) with open('./data/meta.bin', 'rb') as f: meta = pickle.load(f) headers = [h[1] for h in meta_to_header(meta, 'movie')] headers.extend([h[1] for h in meta_to_header(meta, 'user')]) cvt = DataProviderConverter(headers) while True: movie_id = int(raw_input("Input movie_id: ")) user_id = int(raw_input("Input user_id: ")) movie_meta = meta['movie'][movie_id] # Query Data From Meta. user_meta = meta['user'][user_id] data = [movie_id - 1] data.extend(movie_meta) data.append(user_id - 1) data.extend(user_meta) print "Prediction Score is %.2f" % ( (network.forwardTest(cvt.convert([data]))[0]['value'][0][0] + 5) / 2)