# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle import paddle.nn.functional as F import paddle.fluid as fluid import numpy as np from paddle.fluid.framework import _test_eager_guard def p_normalize(x, axis=1, p=2, epsilon=1e-12, keepdims=True): xp = np.power(np.abs(x), p) s = np.sum(xp, axis=axis, keepdims=keepdims) r = np.maximum(np.power(s, 1.0 / p), epsilon) return x / r class TestNNFunctionalNormalize(unittest.TestCase): def setUp(self): self.input_np = np.random.random(size=(10, 10)).astype(np.float32) self.input_np2 = np.array([0.0, 0.0]).astype(np.float32) self.expected0 = p_normalize(self.input_np) self.expected1 = p_normalize(self.input_np, p=1.5) self.expected2 = p_normalize(self.input_np, axis=0) self.expected3 = p_normalize(self.input_np2, axis=0) def run_imperative(self): x = paddle.to_tensor(self.input_np) y = F.normalize(x) np.testing.assert_allclose(y.numpy(), self.expected0, rtol=1e-05) y = F.normalize(x, p=1.5) np.testing.assert_allclose(y.numpy(), self.expected1, rtol=1e-05) y = F.normalize(x, axis=0) np.testing.assert_allclose(y.numpy(), self.expected2, rtol=1e-05) x = paddle.to_tensor(self.input_np2) y = F.normalize(x, axis=0) np.testing.assert_allclose(y.numpy(), self.expected3, rtol=1e-05) self.assertRaises(BaseException, F.normalize, x) def run_static(self, use_gpu=False): x = paddle.fluid.data(name='input', shape=[10, 10], dtype='float32') x2 = paddle.fluid.data(name='input2', shape=[2], dtype='float32') result0 = F.normalize(x) result1 = F.normalize(x, p=1.5) result2 = F.normalize(x, axis=0) result3 = F.normalize(x, name='aaa') result4 = F.normalize(x2, axis=0) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) static_result = exe.run(feed={ "input": self.input_np, "input2": self.input_np2 }, fetch_list=[result0, result1, result2, result4]) np.testing.assert_allclose(static_result[0], self.expected0, rtol=1e-05) np.testing.assert_allclose(static_result[1], self.expected1, rtol=1e-05) np.testing.assert_allclose(static_result[2], self.expected2, rtol=1e-05) self.assertTrue('aaa' in result3.name) np.testing.assert_allclose(static_result[3], self.expected3, rtol=1e-05) self.assertRaises(ValueError, F.normalize, x2) def test_cpu(self): paddle.disable_static(place=paddle.fluid.CPUPlace()) self.run_imperative() paddle.enable_static() with fluid.program_guard(fluid.Program()): self.run_static() def test_cpu_eager(self): with _test_eager_guard(): paddle.disable_static(place=paddle.fluid.CPUPlace()) self.run_imperative() paddle.enable_static() def test_gpu(self): if not fluid.core.is_compiled_with_cuda(): return paddle.disable_static(place=paddle.fluid.CUDAPlace(0)) self.run_imperative() paddle.enable_static() with fluid.program_guard(fluid.Program()): self.run_static(use_gpu=True) def test_gpu_eager(self): with _test_eager_guard(): if not fluid.core.is_compiled_with_cuda(): return paddle.disable_static(place=paddle.fluid.CUDAPlace(0)) self.run_imperative() paddle.enable_static() if __name__ == "__main__": unittest.main()