# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.fluid.core as core np.random.seed(10) class TestNanmeanAPI(unittest.TestCase): # test paddle.tensor.math.nanmean def setUp(self): self.x_shape = [2, 3, 4, 5] self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32) self.x[0, :, :, :] = np.nan self.x_grad = np.array([[np.nan, np.nan, 3.], [0., np.nan, 2.]]).astype(np.float32) self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \ else paddle.CPUPlace() def test_api_static(self): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data('X', self.x_shape) out1 = paddle.nanmean(x) out2 = paddle.tensor.nanmean(x) out3 = paddle.tensor.math.nanmean(x) axis = np.arange(len(self.x_shape)).tolist() out4 = paddle.nanmean(x, axis) out5 = paddle.nanmean(x, tuple(axis)) exe = paddle.static.Executor(self.place) res = exe.run(feed={'X': self.x}, fetch_list=[out1, out2, out3, out4, out5]) out_ref = np.nanmean(self.x) for out in res: np.testing.assert_allclose(out, out_ref, rtol=0.0001) def test_api_dygraph(self): paddle.disable_static(self.place) def test_case(x, axis=None, keepdim=False): x_tensor = paddle.to_tensor(x) out = paddle.nanmean(x_tensor, axis, keepdim) if isinstance(axis, list): axis = tuple(axis) if len(axis) == 0: axis = None out_ref = np.nanmean(x, axis, keepdims=keepdim) if np.isnan(out_ref).sum(): nan_mask = np.isnan(out_ref) out_ref[nan_mask] = 0 out_np = out.numpy() out_np[nan_mask] = 0 np.testing.assert_allclose(out_np, out_ref, rtol=0.0001) else: np.testing.assert_allclose(out.numpy(), out_ref, rtol=0.0001) test_case(self.x) test_case(self.x, []) test_case(self.x, -1) test_case(self.x, keepdim=True) test_case(self.x, 2, keepdim=True) test_case(self.x, [0, 2]) test_case(self.x, (0, 2)) test_case(self.x, [0, 1, 2, 3]) paddle.enable_static() def test_errors(self): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data('X', [10, 12], 'int32') self.assertRaises(TypeError, paddle.nanmean, x) def test_api_dygraph_grad(self): paddle.disable_static(self.place) def test_case(x, axis=None, keepdim=False): if isinstance(axis, list): axis = list(axis) if len(axis) == 0: axis = None x_tensor = paddle.to_tensor(x, stop_gradient=False) y = paddle.nanmean(x_tensor, axis, keepdim) dx = paddle.grad(y, x_tensor)[0].numpy() sum_dx_ref = np.prod(y.shape) if np.isnan(y.numpy()).sum(): sum_dx_ref -= np.isnan(y.numpy()).sum() cnt = paddle.sum(~paddle.isnan(x_tensor), axis=axis, keepdim=keepdim) if (cnt == 0).sum(): dx[np.isnan(dx)] = 0 sum_dx = dx.sum() np.testing.assert_allclose(sum_dx, sum_dx_ref, rtol=0.0001) test_case(self.x) test_case(self.x, []) test_case(self.x, -1) test_case(self.x, keepdim=True) test_case(self.x, 2, keepdim=True) test_case(self.x, [0, 2]) test_case(self.x, (0, 2)) test_case(self.x, [0, 1, 2, 3]) test_case(self.x_grad) test_case(self.x_grad, []) test_case(self.x_grad, -1) test_case(self.x_grad, keepdim=True) test_case(self.x_grad, 0, keepdim=True) test_case(self.x_grad, 1) test_case(self.x_grad, (0, 1)) paddle.enable_static() if __name__ == "__main__": unittest.main()