# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import check_out_dtype import paddle from paddle.fluid.framework import _test_eager_guard import paddle.fluid.core as core from test_sum_op import TestReduceOPTensorAxisBase class ApiMaxTest(unittest.TestCase): def setUp(self): if core.is_compiled_with_cuda(): self.place = core.CUDAPlace(0) else: self.place = core.CPUPlace() def test_api(self): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()): data = paddle.static.data("data", shape=[10, 10], dtype="float32") result_max = paddle.max(x=data, axis=1) exe = paddle.static.Executor(self.place) input_data = np.random.rand(10, 10).astype(np.float32) res, = exe.run(feed={"data": input_data}, fetch_list=[result_max]) self.assertEqual((res == np.max(input_data, axis=1)).all(), True) with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()): data = paddle.static.data("data", shape=[10, 10], dtype="int64") result_max = paddle.max(x=data, axis=0) exe = paddle.static.Executor(self.place) input_data = np.random.randint(10, size=(10, 10)).astype(np.int64) res, = exe.run(feed={"data": input_data}, fetch_list=[result_max]) self.assertEqual((res == np.max(input_data, axis=0)).all(), True) with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()): data = paddle.static.data("data", shape=[10, 10], dtype="int64") result_max = paddle.max(x=data, axis=(0, 1)) exe = paddle.static.Executor(self.place) input_data = np.random.randint(10, size=(10, 10)).astype(np.int64) res, = exe.run(feed={"data": input_data}, fetch_list=[result_max]) self.assertEqual((res == np.max(input_data, axis=(0, 1))).all(), True) def test_errors(self): paddle.enable_static() def test_input_type(): with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()): data = np.random.rand(10, 10) result_max = paddle.max(x=data, axis=0) self.assertRaises(TypeError, test_input_type) def test_imperative_api(self): paddle.disable_static() np_x = np.array([10, 10]).astype('float64') x = paddle.to_tensor(np_x) z = paddle.max(x, axis=0) np_z = z.numpy() z_expected = np.array(np.max(np_x, axis=0)) self.assertEqual((np_z == z_expected).all(), True) def test_eager_api(self): with _test_eager_guard(): self.test_imperative_api() def test_big_dimension(self): paddle.disable_static() x = paddle.rand(shape=[2, 2, 2, 2, 2, 2, 2]) np_x = x.numpy() z1 = paddle.max(x, axis=-1) z2 = paddle.max(x, axis=6) np_z1 = z1.numpy() np_z2 = z2.numpy() z_expected = np.array(np.max(np_x, axis=6)) self.assertEqual((np_z1 == z_expected).all(), True) self.assertEqual((np_z2 == z_expected).all(), True) def test_all_negative_axis(self): paddle.disable_static() x = paddle.rand(shape=[2, 2]) np_x = x.numpy() z1 = paddle.max(x, axis=(-2, -1)) np_z1 = z1.numpy() z_expected = np.array(np.max(np_x, axis=(0, 1))) self.assertEqual((np_z1 == z_expected).all(), True) class TestOutDtype(unittest.TestCase): def test_max(self): api_fn = paddle.max shape = [10, 16] check_out_dtype(api_fn, in_specs=[(shape, )], expect_dtypes=['float32', 'float64', 'int32', 'int64']) class TestMaxWithTensorAxis1(TestReduceOPTensorAxisBase): def init_data(self): self.pd_api = paddle.max self.np_api = np.max self.x = paddle.randn([10, 5, 9, 9], dtype='float64') self.np_axis = np.array([1, 2], dtype='int64') self.tensor_axis = paddle.to_tensor([1, 2], dtype='int64') class TestMaxWithTensorAxis2(TestReduceOPTensorAxisBase): def init_data(self): self.pd_api = paddle.max self.np_api = np.max self.x = paddle.randn([10, 10, 9, 9], dtype='float64') self.np_axis = np.array([0, 1, 2], dtype='int64') self.tensor_axis = [ 0, paddle.to_tensor([1], 'int64'), paddle.to_tensor([2], 'int64') ] if __name__ == '__main__': unittest.main()