# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import unittest import numpy as np import paddle.fluid as fluid import paddle.fluid.core as core from op_test import OpTest from paddle.fluid import Program, program_guard class TestLRNOp(OpTest): def get_input(self): r''' TODO(gongweibao): why it's grad diff is so large? x = np.ndarray( shape=(self.N, self.C, self.H, self.W), dtype=float, order='C') for m in range(0, self.N): for i in range(0, self.C): for h in range(0, self.H): for w in range(0, self.W): x[m][i][h][w] = m * self.C * self.H * self.W + \ i * self.H * self.W + \ h * self.W + w + 1 ''' x = np.random.rand(self.N, self.C, self.H, self.W).astype("float32") return x + 1 def get_out(self): start = -(self.n - 1) // 2 end = start + self.n mid = np.empty((self.N, self.C, self.H, self.W)).astype("float32") mid.fill(self.k) for m in range(0, self.N): for i in range(0, self.C): for c in range(start, end): ch = i + c if ch < 0 or ch >= self.C: continue s = mid[m][i][:][:] r = self.x[m][ch][:][:] s += np.square(r) * self.alpha mid2 = np.power(mid, -self.beta) return np.multiply(self.x, mid2), mid def get_attrs(self): attrs = { 'n': self.n, 'k': self.k, 'alpha': self.alpha, 'beta': self.beta, 'data_format': self.data_format } return attrs def setUp(self): self.op_type = "lrn" self.init_test_case() self.N = 2 self.C = 3 self.H = 5 self.W = 5 self.n = 5 self.k = 2.0 self.alpha = 0.0001 self.beta = 0.75 self.x = self.get_input() self.out, self.mid_out = self.get_out() if self.data_format == 'NHWC': self.x = np.transpose(self.x, [0, 2, 3, 1]) self.out = np.transpose(self.out, [0, 2, 3, 1]) self.mid_out = np.transpose(self.mid_out, [0, 2, 3, 1]) self.inputs = {'X': self.x} self.outputs = {'Out': self.out, 'MidOut': self.mid_out} self.attrs = self.get_attrs() def init_test_case(self): self.data_format = 'NCHW' def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X'], 'Out') class TestLRNOpAttrDataFormat(TestLRNOp): def init_test_case(self): self.data_format = 'NHWC' class TestLRNAPI(unittest.TestCase): def test_case(self): data1 = fluid.data(name='data1', shape=[2, 4, 5, 5], dtype='float32') data2 = fluid.data(name='data2', shape=[2, 5, 5, 4], dtype='float32') out1 = fluid.layers.lrn(data1, data_format='NCHW') out2 = fluid.layers.lrn(data2, data_format='NHWC') data1_np = np.random.random((2, 4, 5, 5)).astype("float32") data2_np = np.transpose(data1_np, [0, 2, 3, 1]) if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) results = exe.run(fluid.default_main_program(), feed={ "data1": data1_np, "data2": data2_np }, fetch_list=[out1, out2], return_numpy=True) np.testing.assert_allclose(results[0], np.transpose(results[1], (0, 3, 1, 2)), rtol=1e-05) def test_exception(self): input1 = fluid.data(name="input1", shape=[2, 4, 5, 5], dtype="float32") input2 = fluid.data(name="input2", shape=[2, 4, 5, 5, 5], dtype="float32") def _attr_data_fromat(): out = fluid.layers.lrn(input1, data_format='NDHW') def _input_dim_size(): out = fluid.layers.lrn(input2) self.assertRaises(ValueError, _attr_data_fromat) self.assertRaises(ValueError, _input_dim_size) class TestLRNOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # the input must be float32 in_w = fluid.data(name="in_w", shape=[None, 3, 3, 3], dtype="int64") self.assertRaises(TypeError, fluid.layers.lrn, in_w) class TestLocalResponseNormFAPI(unittest.TestCase): def setUp(self): np.random.seed(123) self.places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): self.places.append(fluid.CUDAPlace(0)) def check_static_3d_input(self, place): with fluid.program_guard(fluid.Program(), fluid.Program()): in_np1 = np.random.random([3, 40, 40]).astype("float32") in_np2 = np.transpose(in_np1, (0, 2, 1)) input1 = fluid.data(name="input1", shape=[3, 40, 40], dtype="float32") input2 = fluid.data(name="input2", shape=[3, 40, 40], dtype="float32") res1 = paddle.nn.functional.local_response_norm(x=input1, size=5, data_format='NCL') res2 = paddle.nn.functional.local_response_norm(x=input2, size=5, data_format='NLC') exe = fluid.Executor(place) fetches = exe.run(fluid.default_main_program(), feed={ "input1": in_np1, "input2": in_np2 }, fetch_list=[res1, res2]) fetches1_tran = np.transpose(fetches[1], (0, 2, 1)) np.testing.assert_allclose(fetches[0], fetches1_tran, rtol=1e-05) def check_static_4d_input(self, place): with fluid.program_guard(fluid.Program(), fluid.Program()): input1 = fluid.data(name="input1", shape=[3, 3, 40, 40], dtype="float32") input2 = fluid.data(name="input2", shape=[3, 40, 40, 3], dtype="float32") res1 = paddle.nn.functional.local_response_norm(x=input1, size=5, data_format='NCHW') res2 = paddle.nn.functional.local_response_norm(x=input2, size=5, data_format='NHWC') in_np1 = np.random.random([3, 3, 40, 40]).astype("float32") in_np2 = np.transpose(in_np1, (0, 2, 3, 1)) exe = fluid.Executor(place) fetches = exe.run(fluid.default_main_program(), feed={ "input1": in_np1, "input2": in_np2 }, fetch_list=[res1, res2]) fetches1_tran = np.transpose(fetches[1], (0, 3, 1, 2)) np.testing.assert_allclose(fetches[0], fetches1_tran, rtol=1e-05) def check_static_5d_input(self, place): with fluid.program_guard(fluid.Program(), fluid.Program()): input1 = fluid.data(name="input1", shape=[3, 3, 3, 40, 40], dtype="float32") input2 = fluid.data(name="input2", shape=[3, 3, 40, 40, 3], dtype="float32") res1 = paddle.nn.functional.local_response_norm(x=input1, size=5, data_format='NCDHW') res2 = paddle.nn.functional.local_response_norm(x=input2, size=5, data_format='NDHWC') in_np1 = np.random.random([3, 3, 3, 40, 40]).astype("float32") in_np2 = np.transpose(in_np1, (0, 2, 3, 4, 1)) exe = fluid.Executor(place) fetches = exe.run(fluid.default_main_program(), feed={ "input1": in_np1, "input2": in_np2 }, fetch_list=[res1, res2]) fetches1_tran = np.transpose(fetches[1], (0, 4, 1, 2, 3)) np.testing.assert_allclose(fetches[0], fetches1_tran, rtol=1e-05) def test_static(self): for place in self.places: self.check_static_3d_input(place=place) self.check_static_4d_input(place=place) self.check_static_5d_input(place=place) def check_dygraph_3d_input(self, place): with fluid.dygraph.guard(place): in_np1 = np.random.random([3, 40, 40]).astype("float32") in_np2 = np.transpose(in_np1, (0, 2, 1)) in1 = paddle.to_tensor(in_np1) in2 = paddle.to_tensor(in_np2) res1 = paddle.nn.functional.local_response_norm(x=in1, size=5, data_format='NCL') res2 = paddle.nn.functional.local_response_norm(x=in2, size=5, data_format='NLC') res2_tran = np.transpose(res2.numpy(), (0, 2, 1)) np.testing.assert_allclose(res1.numpy(), res2_tran, rtol=1e-05) def check_dygraph_4d_input(self, place): with fluid.dygraph.guard(place): in_np1 = np.random.random([3, 3, 40, 40]).astype("float32") in_np2 = np.transpose(in_np1, (0, 2, 3, 1)) in1 = paddle.to_tensor(in_np1) in2 = paddle.to_tensor(in_np2) res1 = paddle.nn.functional.local_response_norm(x=in1, size=5, data_format='NCHW') res2 = paddle.nn.functional.local_response_norm(x=in2, size=5, data_format='NHWC') res2_tran = np.transpose(res2.numpy(), (0, 3, 1, 2)) np.testing.assert_allclose(res1.numpy(), res2_tran, rtol=1e-05) def check_dygraph_5d_input(self, place): with fluid.dygraph.guard(place): in_np1 = np.random.random([3, 3, 3, 40, 40]).astype("float32") in_np2 = np.transpose(in_np1, (0, 2, 3, 4, 1)) in1 = paddle.to_tensor(in_np1) in2 = paddle.to_tensor(in_np2) res1 = paddle.nn.functional.local_response_norm(x=in1, size=5, data_format='NCDHW') res2 = paddle.nn.functional.local_response_norm(x=in2, size=5, data_format='NDHWC') res2_tran = np.transpose(res2.numpy(), (0, 4, 1, 2, 3)) np.testing.assert_allclose(res1.numpy(), res2_tran, rtol=1e-05) def test_dygraph(self): for place in self.places: self.check_dygraph_3d_input(place) self.check_dygraph_4d_input(place) self.check_dygraph_5d_input(place) class TestLocalResponseNormFAPIError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): def test_Variable(): # the input of lrn must be Variable. x1 = fluid.create_lod_tensor(np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()) paddle.nn.functional.local_response_norm(x1, size=5) self.assertRaises(TypeError, test_Variable) def test_datatype(): x = fluid.data(name='x', shape=[3, 4, 5, 6], dtype="int32") paddle.nn.functional.local_response_norm(x, size=5) self.assertRaises(TypeError, test_datatype) def test_dataformat(): x = fluid.data(name='x', shape=[3, 4, 5, 6], dtype="float32") paddle.nn.functional.local_response_norm(x, size=5, data_format="NCTHW") self.assertRaises(ValueError, test_dataformat) def test_dim(): x = fluid.data(name='x', shape=[3, 4], dtype="float32") paddle.nn.functional.local_response_norm(x, size=5) self.assertRaises(ValueError, test_dim) def test_shape(): x = paddle.rand(shape=[0, 0, 2, 3], dtype="float32") paddle.nn.functional.local_response_norm(x, size=5) self.assertRaises(ValueError, test_shape) class TestLocalResponseNormCAPI(unittest.TestCase): def setUp(self): np.random.seed(123) self.places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): self.places.append(fluid.CUDAPlace(0)) def test_dygraph(self): for place in self.places: with fluid.dygraph.guard(place): in1 = paddle.rand(shape=(3, 3, 40, 40), dtype="float32") in2 = paddle.transpose(in1, [0, 2, 3, 1]) m1 = paddle.nn.LocalResponseNorm(size=5, data_format='NCHW') m2 = paddle.nn.LocalResponseNorm(size=5, data_format='NHWC') res1 = m1(in1) res2 = m2(in2) res2_tran = np.transpose(res2.numpy(), (0, 3, 1, 2)) np.testing.assert_allclose(res1.numpy(), res2_tran, rtol=1e-05) if __name__ == "__main__": unittest.main()